Bjkl

In: Other Topics

Submitted By psharmaxxx
Words 309
Pages 2
STAFF SELECTION COMMISSION
SCHEDULE FOR EXAMINATIONS TO BE HELD DURING THE YEAR 2016

(January to December 2016)
Sl
Name of Examination
No
1 Special Recruitment Drive for MTS
Examination 2015
2 Rectt. of SI in CAPFs, ASI in CISF and SI in Delhi Police Examination -2016
3 Combined Graduate Level Examination –
2016 (Tier-I)
4 Jr. Hindi Translator in Subordinate Office
Examination – 2016
5 Stenographer Grade ‘C’ & ‘D’
Examination – 2016
6
7

8
9

Combined Graduate Level (Tier-II)
Examination- 2016
Combined Higher Secondary (10+2)
Examination 2016
Junior Engineer (Civil, Electrical &
Mechanical) Examination – 2016
Multi Tasking (Non-Technical) Staff
Examination-2016

10 Recruitment for staffs in Cabinet
Secretariat
11 Recruitment for Constables (Exe.) in
Delhi Police

Date of Advt.

Closing Date

24.10.2015

23.11.2015

09.01.2016

05.02.2016

13.02.2016

14.03.2016

02.04.2016

30.04.2016

07.05.2016

03.06.2016

02.07.2016

01.08.2016

20.08.2016

16.09.2016

08.10.2016

07.11.2016

Date of Exam
10.01.2016
20.03.2016(Paper-I)
05.06.2016 (Paper-II)
08.05.2016
22.05.2016
19.06.2016
31.07.2016

13.08.2016(Saturday)
14.08.2016 (Sunday)
25.09.2016
09.10.2016
16.10.2016
11.12.2016
2016
08.01.2017
22.01.2017

To be Notified later
To be Notified later

Departmental Examination
Sl Name of Examination
No
1
Clerks’ Grade (for Multi Tasking
Staff only) Exam., 2016
2
Grade ‘C’ Steno. Ltd. Depttl. Comp.
Exam., 2016
3
Upper Div. Clerk Ltd. Depttl. Comp.
Exam., 2016

Date of Advt.

Closing Date

Date of Exam

16.01.2016

12.02.2016

27.03.2016

09.04.2016

06.05.2016

03.07.2016

03.09.2016

30.09.2016

27.11.2016

Under Secretary (P&P-I)…...

Similar Documents

Euler-Lagrange Partial Di Erential Equations

...i αi j 0 ωj def   0 βi  , −2ρ 0 Bj Φ = dφ + φ ∧ φ =  0 Ai j 0 0 def   0 Bi  , 0 (3.14) where Ai j = k l 1 i 2 Ajkl ω ∧ ω , Ai + A j = jkl ikl i Ai + Aklj + jkl k l 1 2 Bjkl ω ∧ ω , Ai + Ai = 0, jkl jlk Ai = Al = 0, ljk jkl Bj = Bjkl + Bjlk = Bjkl + Bklj + Bljk = 0. Furthermore, the action of Rn on P → P0 and that of CO(n, R) on P0 → N may be combined, to realize P → N as a principal bundle having structure group G ⊂ SOo (n + 1, 1) consisting of matrices of the form (3.3). The matrix 1-form φ in (3.14) defines an so(n+1, 1)-valued parallelism on P , under which the tangent spaces of fibers of P → N are carried to the Lie algebra g ⊂ so(n+1, 1) of G, and φ is equivariant with respect to the adjoint action of G on so(n+1, 1). The data of (P → N, φ) is often called a Cartan connection modelled on g → so(n + 1, 1). 92 CHAPTER 3. CONFORMALLY INVARIANT SYSTEMS The components of this matrix equation yield linear-algebraic consequences about the derivatives of Ai , Bjkl . First, one finds that jkl i 1 2 DAjkl We conclude this discussion by describing some properties of the functions Ai , Bjkl on P . Differentiating the definition of Φ (3.14) yields the Bianchi jkl identity dΦ = Φ ∧ ϕ − ϕ ∧ Φ. ∧ ωk ∧ ωl = 1 Bikl ωj ∧ ωk ∧ ωl − 1 Bjkl ωi ∧ ωk ∧ ωl . 2 2 (3.15) In particular, referring to the definition (3.13), this shows that the collection of functions (Ai ) vary along the fibers of P → N by a linear representation jkl of......

Words: 82432 - Pages: 330

Boonvaye

...….hakhdbkajdaj kbdhabkdahibdeknqbihakbdihiabdhhiuhdbakn bdiuhakndshadbahdiuhans dbhiuahdnhc d d d d d d f kns sljs akhfa shflaj aojfda ioahda kahda dauhd ada da diabd aih aib abd anbdia dnajn akbdiab dkabd qdjnaond alnan dajndlamija daod akjdnaj daobd wdjouwne fmr nfouiw fnieofjwnfnf ifnlws fsof onf oiwnf wlnfn efihw fojf wmlnfojw fwmf owjf wlfnwnf nwnbfhjwf;wnfcw fon woif wbfowf w fiowbwf owf wofb wofwb fwofw wkf weovon ion iuh n jh in jouj ojhuih jh ihiuh jhi hi joui n h hjn hyu ohniy hij ihb iujm kh yuhn jl uh ujpk hiiu oj hiuo jui hjk nb ihnjl ljk hyih kln uh jkmn hy j ng hj g jk h yu jn gu bjkl hi jn ihh jkj y hvf vfev fdg fg fdg df fgfdgd gdhrg feg fgf efdrg g f gosjo onb jfjfldndslk sns ksnn j s ks lsobjo sbosn rnuo jgronjngsnbrgnbkmngjnbgnm I k gkogn jof I m oivbkj uin kjj kjn ju j uhn vkjh j h jnjinih bh bh hbnj ni nih nh u nyf fn tf bhf h h u ft jhy7 b jk bnug ugy g uuj hy uggn ubg byt byth uh uyh utghuy uyh by hgngjnyi guin I I uh ium inh ing iu iyng hiu nun gnu ygnygn ig nf gnr wnf f f f sf gg rt t r geg ege ere t tr egfdgd dfdgdf g er g t g rg e ger f gee fdf ergegtre ger geg e g eg en g nre ge g re gijkj nijh uyg b h ihn I iuni hgerihie hhfviy...

Words: 254 - Pages: 2