Free Essay

Physic Test

In: Science

Submitted By jtg324
Words 831
Pages 4
The Total Mechanical Energy
As already mentioned, the mechanical energy of an object can be the result of its motion (i.e., kinetic energy) and/or the result of its stored energy of position (i.e., potential energy). The total amount of mechanical energy is merely the sum of the potential energy and the kinetic energy. This sum is simply referred to as the total mechanical energy (abbreviated TME).
TME = PE + KE
As discussed earlier, there are two forms of potential energy discussed in our course - gravitational potential energy and elastic potential energy. Given this fact, the above equation can be rewritten:
TME = PEgrav + PEspring + KE
The diagram below depicts the motion of Li Ping Phar (esteemed Chinese ski jumper) as she glides down the hill and makes one of her record-setting jumps.

The total mechanical energy of Li Ping Phar is the sum of the potential and kinetic energies. The two forms of energy sum up to 50 000 Joules. Notice also that the total mechanical energy of Li Ping Phar is a constant value throughout her motion. There are conditions under which the total mechanical energy will be a constant value and conditions under which it will be a changing value. This is the subject of Lesson 2 - the work-energy relationship. For now, merely remember that total mechanical energy is the energy possessed by an object due to either its motion or its stored energy of position. The total amount of mechanical energy is merely the sum of these two forms of energy. And finally, an object with mechanical energy is able to do work on another object.
Momentum as a Vector QuantityMomentum is a vector quantity. As discussed in an earlier unit, a vector quantity is a quantity that is fully described by both magnitude and direction. To fully describe the momentum of a 5-kg bowling ball moving westward at 2 m/s, you must include information about both the magnitude and the direction of the bowling ball. It is not enough to say that the ball has 10 kg•m/s of momentum; the momentum of the ball is not fully described until information about its direction is given. The direction of the momentum vector is the same as the direction of the velocity of the ball. In a previous unit, it was said that the direction of the velocity vector is the same as the direction that an object is moving. If the bowling ball is moving westward, then its momentum can be fully described by saying that it is 10 kg•m/s, westward. As a vector quantity, the momentum of an object is fully described by both magnitude and direction. * From the definition of momentum, it becomes obvious that an object has a large momentum if both its mass and its velocity are large. Both variables are of equal importance in determining the momentum of an object. Consider a Mack truck and a roller skate moving down the street at the same speed. The considerably greater mass of the Mack truck gives it a considerably greater momentum. Yet if the Mack truck were at rest, then the momentum of the least massive roller skate would be the greatest. The momentum of any object that is at rest is 0. Objects at rest do not have momentum - they do not have any "mass in motion." Both variables - mass and velocity - are important in comparing the momentum of two objects.The momentum equation can help us to think about how a change in one of the two variables might affect the momentum of an object. Consider a 0.5-kg physics cart loaded with one 0.5-kg brick and moving with a speed of 2.0 m/s. The total mass of loaded cart is 1.0 kg and its momentum is 2.0 kg•m/s. If the cart was instead loaded with three 0.5-kg bricks, then the total mass of the loaded cart would be 2.0 kg and its momentum would be 4.0 kg•m/s. A doubling of the mass results in a doubling of the momentum.Similarly, if the 2.0-kg cart had a velocity of 8.0 m/s (instead of 2.0 m/s), then the cart would have a momentum of 16.0 kg•m/s (instead of 4.0 kg•m/s). A quadrupling in velocity results in a quadrupling of the momentum. These two examples illustrate how the equation p = m•v serves as a "guide to thinking" and not merely a "plug-and-chug recipe for algebraic problem-solving." * Express your understanding of the concept and mathematics of momentum by answering the following questions. Click the button to view the answers.
1. Determine the momentum of a ...
a. 60-kg halfback moving eastward at 9 m/s.
b. 1000-kg car moving northward at 20 m/s.
c. 40-kg freshman moving southward at 2 m/s…...

Similar Documents

Premium Essay

The Construction and Validation of an Achievement Test in College Physics for the Family Clinic Colleges S.Y. 2006 -2007

...scoring of tests. Before it is possible to make a practical judgment some aspects of status must be measure. One of the measures of evaluating students’ status or change is an achievement status or change in an achievement test. Flores (1960) asserts that achievement test is used as an instrument to secure and to measure pupil performance. It may be in the form of questions, exercises or problems to which the pupil respond directly and to which the responses may , in general be judged or scored as right or wrong. It is given to measure their intelligence and achievement of the pupil in the different areas for as admission and basis for promotion or failure. It is through testing that the results of instruction are measured and evaluated. Teachers have always endeavored to measure the progress of the student towards the achievement of learning and have endeavored also to diagnose his defects in achievement by means of tests. The test has always been considered an indispensable aid to teaching. In other words, information gained through frequent measurements aid them to evaluate student achievement and form the basis for assigning the marks which are such an integral part of education. Such information gives the teacher not only a basis for evaluation of student achievement but also a standard to gauge his own effectiveness. Tests serve a variety of functions. Instructionally, test provides feedback for more appropriate instructional guidance. Administratively,......

Words: 20012 - Pages: 81

Free Essay

Applied Physics Practice Test

...Applied Modern Physics I X-ray diffraction / topography and spectroscopy, electron microscopy, materials science X-ray radiation is very high in energy E = h f (≈ 2 10-15 J = 1,25 104 eV so it’s the same energy an electron would have if it were accelerated by an electrical force going through a potential of 12,500 V) that’s why it penetrated skin and flesh easily, bones not quite so easily and have usage in medicine – is that the main usage??? Who was Conrad Wilhelm Röntgen, discoverer of X-rays? A medical doctor? A physicist, the very first Nobel prize winner in Physics? how did he discover X-rays? 1895, by chance, experimenting with cathode rays (doing similar things to J.J Thompson) on one end of the laboratory, there was a sheet of paper that was covered with a phosphor sitting around at the other end of the laboratory, experimenting in the dark, he noticed that phosphor lights up when he switches on his cathode ray tube, dragging out electrons and accelerating them by a potential difference, the cathode ray tube is expected to be under vacuum, but there was just enough rest gas (air) that electrons got slowed down by being scattered by the molecules, today we know: when electrons are slowed down they radiate off their lost in kinetic energy – and that is X-rays an electromagnetic wave + a stream of high energy photons traveling at the speed of light at the time nobody knows how the radiation originates and of what kind it was: wave or particles?......

Words: 1792 - Pages: 8

Free Essay

Physics

...Assignment in Physics... 1. Definition of Science, Major branches of science 2. Scientific Method 3. Definition of Physics and its major branches 4. Notable Physicist and their contribution 5. Importance of Physics in our everyday life and in our society. (Write the references) Short bond paper, written or computerized (font: Times New Roman/font size: 12) Reading assign. Measurement Diff. system of measurement fundamentals and derive quantities scientific notation rules in significant figures conversion of units http://www.hep.man.ac.uk/babarph/babarphysics/physicists.html ) I.1 Science The intellectual and practical activity encompassing the systematic study of the structure and behaviour of the physical and natural world through observation and experiment. I.2 The Branches of Science The Physical Sciences * Physics: The study of matter and energy and the interactions between them. Physicists study such subjects as gravity, light, and time. Albert Einstein, a famous physicist, developed the Theory of Relativity. * Chemistry: The science that deals with the composition, properties, reactions, and the structure of matter. The chemist Louis Pasteur, for example, discovered pasteurization, which is the process of heating liquids such as milk and orange juice to kill harmful germs. * Astronomy: The study of the universe beyond the Earth's atmosphere. The Earth Sciences * Geology: The science of the origin, history, and structure...

Words: 1431 - Pages: 6

Free Essay

Physics

...Stage 1 Physics Practical- motion Aim: To investigate the speeds of different moving objects. Hypothesis: If the ball is heavier then it will longer to cover a distance, therefore it will travel at a slower speed. Variables: Independent- The independent variable that was established before the practical was the weight of the ball. Dependent- Where the dependent variable relying on the independent variable was the time taken for the ball to travel a certain distance. Controlled-The controlled variable that were established within the motion practical where distance covered, the surface the ball was travelling on and the force that was applied to the ball. Materials: The materials that are needed to complete this particular practical successfully are a- -Four stopwatches -measuring tape -graphics calculator -chalk -Three different weights for balls Diagram of practical set up Method: 1. The materials were gathered. (see materials) 2. A distance of eight metres in two metre intervals was measured and marked. 3. One person stood at the beginning preparing to roll the ball, while four others stood with a stopwatch. 4. The stopwatches were started as the ball was released. 5. The stopwatch was clicked to stop as it pasted the intervals. 6. Data was collected for each time completing the practical. Results: | Time taken (s) | Tennis Ball | Dodge Ball | Basketball | Distance covered (m) | | | | | 2 |...

Words: 654 - Pages: 3

Premium Essay

Physics

...into the physics. Select the Wave Interference simulation from the Sound and Waves folder 1) Before you change any settings a. What is the shape of the pulse? b. How can you explain this? Consider the wave velocity. REFLECTION: 2) Increase the amplitude to maximum. 3) Turn off the water and add a vertical wall (bottom right button) across the entire width of the tank. 4) Turn on the water for just a couple of drips. 5) Observe the wave reflection from the barrier a. What is the shape of the reflection? b. In what ways does it differ from the incident (incoming) wave? c. Compare this result to what you learned about reflected pulses from the wave on a spring demo? INTERFERENCE: 6) Allow the faucet to run. Feel free to adjust the frequency. a. Think back to the wave on a spring demo when multiple waves tried to occupy the spring at the same time (interference). What do you think the particularly bright and dark spots represent? 7) Show the graph and observe the last couple of waves in front of the wall. a. Once again, considering the wave on a spring demo, what do these last waves on the graph remind you of? 8) A second example of wave interference can be seen by removing the barrier and turning on a second drip a. Draw or describe the resulting pattern. b. How are the dark & light stripes similar to and different from standing waves? (Hint: Look at the graph again) c. What do you think may be happening along the gray rays? d. How can you test your......

Words: 665 - Pages: 3

Premium Essay

Physics

... PHYS 1313 S06 Prof. T.E. Coan Version: 16 Jan ’06 Introduction Physics makes both general and detailed statements about the physical universe and these statements are organized in such a way that they provide a model or a kind of coherent picture about how and why the universe works the way it does. These sets of statements are called “theories” and are much more than a simple list of “facts and figures” like you might find in an almanac or a telephone book (even though almanacs and telephone books are quite useful). A good physics theory is far more interested in principles than simple “facts.” Noting that the moon appears regularly in the night sky is far less interesting than understanding why it does so. We have confidence that a particular physics theory is telling us something interesting about the physical universe because we are able to test quantitatively its predictions or statements about the universe. Indeed, all physics (and scientific) theories have this “put up or shut up” quality to them. For something to be called a physics “theory” in the first place, it must be falsifiable and therefore must make quantitative statements about the universe that can be then quantitatively tested. These tests are called “experiments.” The statement, “My girlfriend is the most charming woman in the world,” however true it may be, has no business being in a physics theory because it simply cannot be quantitatively tested. If the experimental......

Words: 3271 - Pages: 14

Premium Essay

Physics

...PHYSICS I 1. The steps for the scientific method are listed in chapter 1. List and explain each of the steps in the scientific method in the context of the following situation. You do not have to resolve the question; just explain the steps for resolving the question: It is well known that objects expand when heated. An iron plate will get slightly larger when put in a hot oven. Suppose an iron plate has a hole cut in the center. Will the hole get larger or smaller when the plate is heated and expansion occurs? Step 1. Recognize a question - The question being will the hole in the iron plate get larger or smaller when it is heated and expansion occurs? Step 2. Make an hypothesis, a possible solution to the question- Maybe perhaps it will get smaller/larger because... Step 3. Predict consequences of the hypothesis, possible outcomes - Either the hole will get larger, smaller, or stay the same size...less solution is the probably the most unlikely. Step 4. Perform actual tests to see what the solution is - Means measuring the hole beforehand then heating the iron plate till expansion occurs and see what the results are. Step 5. Conclusion - Form a final answer to the solution from the results of the tests you performed. 2a. Compare Aristotle's concept of inertia with the ideas of Galileo and Newton. In making your comparison, state the concept as each interpreted it (in your own words) and give the similarities and differences. Basically Aristotle's concept...

Words: 1345 - Pages: 6

Free Essay

Physics

...Introductory Physics I Elementary Mechanics by Robert G. Brown Duke University Physics Department Durham, NC 27708-0305 rgb@phy.duke.edu Copyright Notice Copyright Robert G. Brown 1993, 2007, 2013 Notice This physics textbook is designed to support my personal teaching activities at Duke University, in particular teaching its Physics 141/142, 151/152, or 161/162 series (Introductory Physics for life science majors, engineers, or potential physics majors, respectively). It is freely available in its entirety in a downloadable PDF form or to be read online at: http://www.phy.duke.edu/∼rgb/Class/intro physics 1.php It is also available in an inexpensive (really!) print version via Lulu press here: http://www.lulu.com/shop/product-21186588.html where readers/users can voluntarily help support or reward the author by purchasing either this paper copy or one of the even more inexpensive electronic copies. By making the book available in these various media at a cost ranging from free to cheap, I enable the text can be used by students all over the world where each student can pay (or not) according to their means. Nevertheless, I am hoping that students who truly find this work useful will purchase a copy through Lulu or a bookseller (when the latter option becomes available), if only to help subsidize me while I continue to write inexpensive textbooks in physics or other subjects. This textbook is organized for ease of presentation and ease of learning. In particular, they......

Words: 224073 - Pages: 897

Premium Essay

Physics

...A Simulation to Ripple While You Work Objective: To examine reflection, interference, and diffraction in two dimensions and relate to the waves on a spring demo Everybody has at some time thrown a pebble into a puddle and observed the ripples spreading across the surface. Some of us don’t stop until the puddle has been completely filled with every loose piece of debris in the vicinity. Now let’s dive in a bit deeper into the physics. Select the Wave Interference simulation from the Sound and Waves folder 1) Before you change any settings a. What is the shape of the pulse? b. How can you explain this? Consider the wave velocity. Reflection: 2) Increase the amplitude to maximum. 3) Turn off the water and add a vertical wall (bottom right button) across the entire width of the tank. 4) Turn on the water for just a couple of drips. 5) Observe the wave reflection from the barrier a. What is the shape of the reflection? b. In what ways does it differ from the incident (incoming) wave? c. Compare this result to what you learned about reflected pulses from the wave on a spring demo? Interference: 6) Allow the faucet to run. Feel free to adjust the frequency. a. Think back to the wave on a spring demo when multiple waves tried to occupy the spring at the same time (interference). What do you think the particularly bright and dark spots represent? 7) Show the graph and observe the......

Words: 665 - Pages: 3

Free Essay

Physics Test Paper

...77 kg. [pic] State whether Rosemary OR Jacob will sink deeper into the snow and explain the physics principles for this. In you answer, you should consider: • the contact area of the skis and tramping boots • the relationship between pressure and surface area • the mathematical relationship between pressure, force, and area. Person that will sink deeper: Explanation: QUESTION FOUR: skiing down a slope Rosemary skis down a slope in a straight line, as shown in the diagram below. At the bottom of the slope, her speed is 8 ms-1. The combined mass of Rosemary and her skis is 80 kg. [pic] a) Rosemary was stationary before she started skiing down the slope, and it took her 36.7 s to travel 110 m. Calculate her average speed down the slope. Average speed = ms-1 g) Calculate the kinetic energy of Rosemary and her skis as she reaches the bottom of the slope when she is moving at 8 ms-1. Give an appropriate unit for your answer. Kinetic energy = h) The kinetic energy gained by Rosemary when she reached the bottom of the slope does not equal the energy she had when she was stationary at the top of the slope. Explain using the principles of physics why her energy at the top of the slope and her energy at the bottom of the slope are not equal. ......

Words: 976 - Pages: 4

Premium Essay

Fundamentals of Physics 7th Edition Test Bank

...Fundamentals of Physics 7th Edition Test Bank Follow Link Below To Get Tutorial homeworklance.net/downloads/fundamentals-physics-7th-edition-test-bank/ Description: Chapter 1: MEASUREMENT Chapter 2: MOTION ALONG A STRAIGHT LINE Chapter 3: VECTORS Chapter 4: MOTION IN TWO AND THREE DIMENSIONS Chapter 5: FORCE AND MOTION – I Chapter 6: FORCE AND MOTION – II Chapter 7: KINETIC ENERGY AND WORK Chapter 8: POTENTIAL ENERGY AND CONSERVATION OF ENERGY Chapter 9: CENTER OF MASS AND LINEAR MOMENTUM Chapter 10: ROTATION Chapter 11: ROLLING, TORQUE, AND ANGULAR MOMENTUM Chapter 12: EQUILIBRIUM AND ELASTICITY Chapter 13: GRAVITATION Chapter 14: FLUIDS Chapter 15: OSCILLATIONS Chapter 16: WAVES – I Chapter 17: WAVES – II Chapter 18: TEMPERATURE, HEAT, AND THE FIRST LAW OF THERMODYNAMICS Chapter 19: THE KINETIC THEORY OF GASES Chapter 20: ENTROPY AND THE SECOND LAW OF THERMODYNAMICS Chapter 21: ELECTRIC CHARGE Chapter 22: ELECTRIC FIELDS Chapter 23: GAUSS’ LAW Chapter 24: ELECTRIC POTENTIAL Chapter 25: CAPACITANCE Chapter 26: CURRENT AND RESISTANCE Chapter 27: CIRCUITS Chapter 28: MAGNETIC FIELDS Chapter 29: MAGNETIC FIELDS DUE TO CURRENTS Chapter 30: INDUCTION AND INDUCTANCE Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 32: MAXWELL’S EQUATIONS; MAGNETISM AND MATTER Chapter 33: ELECTROMAGNETIC WAVES Chapter 34: IMAGES Chapter 35: INTERFERENCE Chapter 36: DIFFRACTION Chapter 37: SPECIAL THEORY OF RELATIVITY Chapter 38:...

Words: 254 - Pages: 2

Free Essay

Physics

...Year 12 Physics- HSC Course Task: 1 Vincent Ryan First Hand Investigation: Determining a value for Acceleration due to gravity using a pendulum I declare that this report is solely my own work and all sources have been referenced Vincent Ryan ___________ Term 4 2014 Teacher Mr. K. Todd Contents Aim: 3 Hypothesis: 3 Essential Theory: 3, 2 Variables 4, 5 Method: 5 Equipment list: 5 Practical Method Steps: 5 Data analysis steps: 6 Diagram: 2 Qualitative Observations: 7 Table of Results: Raw Data 7, 2, 9 Calculated Quantities: 20 Graphs: 20 Analysis of Data: 21 Percentage Difference: 21 Conclusion 21 Discussions: 12, 2, 14 Bibliography 2 Aim: To determine a value of acceleration due to gravity at Earth’s surface by measuring, calculating and observing the motion of a simple pendulum. Hypothesis: An experimental value of the acceleration due to gravity will be obtained however given the parameters of the procedure, experimental error and also considering that gravity within itself is inconsistent on Earth the result may vary ±5% of the averaged 9.84m-2. Essential Theory: Where: * g= Acceleration due to gravity * G= Universal gravitational constant * M=Mass of the earth * d= distance from the centre of the earth or the radius Using values for Earth: * G= (6.67 x 10-11) * Mearth= (6.0 x1024)kg * dearth = (6.378 x106)m ∴g=(6.67×10-11)(6.0 ×1024)(6378 ×103)2 ∴g≈9.84ms-2 ...

Words: 3820 - Pages: 16

Free Essay

Physics

...Computational Condensed Matter 4 (2015) 32e39 Contents lists available at ScienceDirect Computational Condensed Matter journal homepage: http://ees.elsevier.com/cocom/default.asp Regular article Putting DFT to the trial: First principles pressure dependent analysis on optical properties of cubic perovskite SrZrO3 Ghazanfar Nazir a, b, *, Afaq Ahmad b, Muhammad Farooq Khan a, Saad Tariq b a b Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, South Korea Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan a r t i c l e i n f o a b s t r a c t Article history: Received 8 July 2015 Received in revised form 21 July 2015 Accepted 27 July 2015 Available online 31 July 2015 Here we report optical properties for cubic phase Strontium Zirconate (SrZrO3) at different pressure values (0, 40, 100, 250 and 350) GPa under density functional theory (DFT) using Perdew-Becke-Johnson (PBE-GGA) as exchange-correlation functional. In this article we first time report all the optical properties for SrZrO3. The real and imaginary dielectric functions has investigated along with reflectivity, energy loss function, optical absorption coefficient, optical conductivity, refractive index and extinction coefficient under hydrostatic pressure. We demonstrated the indirect and direct bandgap behavior of SrZrO3 at (0) GPa and (40, 100, 250 and 350) GPa respectively. In addition, static......

Words: 5414 - Pages: 22

Premium Essay

Physics

...No. Information on Every Subject 1. Unit Name: Physics I 2. Code: FHSP1014 3. Classification: Major 4. Credit Value: 4 5. Trimester/Year Offered: 1/1 6. Pre-requisite (if any): No 7. Mode of Delivery: Lecture, Tutorial, Practical 8. Assessment System and Breakdown of Marks: Continuous assessment: 50% - Theoretical Assessment (Tests/Quizzes/Case Studies) (30%) - Practical Assessment (Lab reports/Lab tests) (20%) Final Examination 9. 10. 50% Academic Staff Teaching Unit: Objective of Unit: The aims of this course are to enable students to: • appreciate the important role of physics in biology. • elucidate the basic principles in introductory physics enveloping mechanics, motion, properties of matter and heat. • resolve and interpret quantitative and qualitative problems in an analytical manner. • acquire an overall perspective of the inter-relationship between the various topics covered and their applications to the real world. • acquire laboratory skills including the proper handling and use of laboratory apparatus and materials. 11. Learning Outcome of Unit: At the end of the course, students will be able to: 1. Identify and practice the use of units and dimensional analysis, uncertainty significant figures and vectors analysis. 2. Apply and solve problems related to translational and rotational kinematics and dynamics in one and two dimensions. 3. Apply and solve problems related to......

Words: 765 - Pages: 4

Free Essay

Physics

...COURSE PHYSICS 1 (CORE MODULES) Coordinators Dr. Oum Prakash Sharma Sh. R.S. Dass NATIONAL INSTITUTE OF OPEN SCHOOLING A-25, INSTITUTIONAL AREA, SECTOR-62, NOIDA-201301 (UP) COURSE DESIGN COMMITTEE CHAIRMAN Prof. S.C. Garg Former Pro-Vice Chancellor IGNOU, Maidan Garhi, Delhi MEMBERS Prof. A.R. Verma Former Director, National Physical Laboratory, Delhi, 160, Deepali Enclave Pitampura, Delhi-34 Dr. Naresh Kumar Reader (Rtd.) Deptt. of Physics Hindu College, D.U. Dr. Oum Prakash Sharma Asstt. Director (Academic) NIOS, Delhi Prof. L.S. Kothari Prof. of Physics (Retd.) Delhi University 71, Vaishali, Delhi-11008 Dr. Vajayshree Prof. of Physics IGNOU, Maidan Garhi Delhi Sh. R.S. Dass Vice Principal (Rtd.) BRMVB, Sr. Sec. School Lajpat Nagar, New Delhi-110024 Dr. G.S. Singh Prof. of Physics IIT Roorkee Sh. K.S. Upadhyaya Principal Jawahar Navodaya Vidyalaya Rohilla Mohammadabad (U.P.) Dr. V.B. Bhatia Prof. of Physics (Retd.) Delhi University 215, Sector-21, Faridabad COURSE DEVELOPMENT TEAM CHAIRMAN Prof. S.C. Garg Former Pro-Vice Chancellor IGNOU, Delhi MEMBERS Prof. V.B. Bhatia 215, Sector-21, Faridabad Prof. B.B. Tripathi Prof. of Physics (Retd.), IIT Delhi 9-A, Awadhpuri, Sarvodaya Nagar Lucknow-226016 Sh. K.S. Upadhyaya Principal Navodaya Vidyalaya Rohilla Mohammadabad, (U.P.) Dr. V.P. Shrivastava Reader (Physics) D.E.S.M., NCERT, Delhi EDITORS TEAM CHAIRMAN Prof. S.C. Garg Former Pro-Vice Chancellor IGNOU, Delhi MEMBERS Prof. B.B. Tripathi Prof. of Physics......

Words: 131353 - Pages: 526