Free Essay

Religious Education

In: Religion Topics

Submitted By delicate
Words 29406
Pages 118
lo io yB io g oCSEC B
Biologyy
og Bi ol gy lo yB io g lo io og
B
ol
Bi
y
Caribbean Examinations Council

®

SYLLABUS
SPECIMEN PAPER
MARK SCHEME
SUBJECT REPORTS

Macmillan Education
4 Crinan Street, London, N1 9XW
A division of Macmillan Publishers Limited
Companies and representatives throughout the world www.macmillan-caribbean.com ISBN 978-0-230-48203-6
© Caribbean Examinations Council (CXC ®) 2015
AER
www.cxc.org www.cxc-store.com The author has asserted their right to be identified as the author of this work in accordance with the
Copyright, Design and Patents Act 1988.
First published 2014
This revised version published 2015

Permission to copy
The material in this book is copyright. However, the publisher grants permission for copies to be made without fee. Individuals may make copies for their own use or for use by classes of which they are in charge; institutions may make copies for use within and by the staff and students of that institution. For copying in any other circumstances, prior permission in writing must be obtained from Macmillan Publishers Limited. Under no circumstances may the material in this book be used, in part or in its entirety, for commercial gain. It must not be sold in any format.
Designed by Macmillan Publishers Limited
Cover design by Macmillan Publishers Limited and Red Giraffe

CSEC Biology Free Resources
LIST OF CONTENTS
CSEC Biology Syllabus Extract

3

CSEC Biology Syllabus

4

CSEC Biology Specimen Papers:
Paper 01
Paper 02
Paper 032

89
104
125

CSEC Biology Mark Schemes for Specimen Papers:
Paper 01
Paper 02
Paper 032

136
137
149

CSEC Biology Subject Reports:
2004 January Subject Report
2004 June Subject Report
2005 January Subject Report
2006 January Subject Report
2007 January Subject Report
2007 May/June Subject Report
2008 January Subject Report
2008 May/June Subject Report
2009 January Subject Report
2009 May/June Subject Report
2010 January Subject Report
2011 January Subject Report
2011 May/June Subject Report
2012 January Subject Report
2012 May/June Subject Report
2013 May/June Subject Report
2014 January Subject Report
2014 May/June Subject Report
2015 January Subject Report

154
173
188
205
220
237
257
274
292
306
327
340
349
366
378
397
415
431
448

Biology
Biology is the discipline in science which seeks to understand the organisation of the organic world through an exploration of the structure and function of life forms at the molecular, cellular, organismal and ecosystem levels, as well as the complex interactions and interdependencies which occur at each of these levels. This knowledge provides the foundation for understanding the opportunities for promoting the well-being of humans and other living organisms in the environment. It generates an awareness of the importance of our biodiversity and the unique role of humans in conserving, protecting and improving the quality of the biological environment for future generations.
The CSEC Biology syllabus has been redesigned with a greater emphasis on the application of the basic principles of Chemistry, Physics and Mathematics, and therefore seeks to strengthen the inter-relationship with these subjects. It also recognises the interrelatedness among the topics in Biology, and social and environmental issues. Such an approach is adopted to develop those long-term transferable skills of ethical conduct, team work, problem-solving, critical thinking, and innovation and communication.
It encourages the use of various teaching and learning strategies to inculcate these skills that will prove useful in everyday life, while at the same time catering to multiple intelligences and different learning styles and needs. It will provide a sound foundation to pursue the study of Life Sciences and related professions at the post-secondary level.
The syllabus is arranged in three sections namely:


Section A

Living Organisms in the Environment



Section B

Life Processes and Disease



Section C

Continuity and Variation

CARIBBEAN EXAMINATIONS COUNCIL
Car ib b e an Se con d ar y Ed ucat ion Ce r t if icat e ®
CSEC®

BIOLOGY
SYLLABUS

a)

Effective for examinations from May–June 2015
NCH

2.SYLLABUS

CXC 20/G/SYLL 13

Published by the Caribbean Examinations Council
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means electronic, photocopying, recording or otherwise without prior permission of the author or publisher.
Correspondence related to the syllabus should be addressed to:
The Pro-Registrar
Caribbean Examinations Council
Caenwood Centre
37 Arnold Road, Kingston 5, Jamaica
Telephone Number: + 1 (876) 630-5200
Facsimile Number: + 1 (876) 967-4972
E-mail Address: cxcwzo@cxc.org
Website: www.cxc.org
Copyright © 2013 by Caribbean Examinations Council
The Garrison, St Michael BB14038, Barbados

CXC 20/G/SYLL 13

Content
RATIONALE ............................................................................................................................................... 1
AIMS ......................................................................................................................................................... 2
CANDIDATE POPULATION........................................................................................................................ 2
SUGGESTED TIME-TABLE ALLOCATION ................................................................................................... 3
ORGANISATION OF THE SYLLABUS .......................................................................................................... 3
SUGGESTIONS FOR TEACHING THE SYLLABUS........................................................................................ 3
CERTIFICATION AND DEFINITION OF PROFILES ...................................................................................... 4
FORMAT OF THE EXAMINATIONS ........................................................................................................... 6
REGULATIONS FOR PRIVATE CANDIDATES ............................................................................................. 7
REGULATIONS FOR RESIT CANDIDATES .................................................................................................. 7
THE PRACTICAL APPROACH ..................................................................................................................... 7
SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT ...................................................................... 12
SECTION B - LIFE PROCESSES AND DISEASE ........................................................................................... 19
SECTION C - CONTINUITY AND VARIATION ............................................................................................. 37
APPENDIX I - GUIDELINES FOR SCHOOL-BASED ASSESSMENT ............................................................ 45
APPENDIX II - RECOMMENDED MINIMUM EQUIPMENT LIST............................................................... 73
APPENDIX III - RECOMMENDED MATERIAL LIST ..................................................................................... 74
APPENDIX IV - RESOURCE MATERIALS .................................................................................................... 75
APPENDIX V - GLOSSARY ......................................................................................................................... 76

CXC 20/G/SYLL 13

This document CXC 20/G/SYLL 13 replaces CXC 20/G/SYLL/02 issued in 2002.

Please note that the syllabus has been revised and amendments are indicated by italics.

First published 1983
Reprinted with amendments 1986, 1987
Revised 1991, 1996, 2002, 2013

Please check the website www.cxc.org for updates on CXC’s syllabuses.

CXC 20/G/SYLL 13

Biology Syllabus
RATIONALE
The application of scientific principles and the conduct of relevant research are of significant importance in identifying, assessing and realising the potential of the resources of Caribbean territories. A good foundation in the sciences will enhance the ability of our citizens to respond to the challenges of a rapidly changing world using the scientific approach.
Biology is the discipline in science which seeks to understand the organisation of the organic world through an exploration of the structure and function of life forms at the molecular, cellular, organismal and ecosystem levels, as well as the complex interactions and interdependencies which occur at each of these levels. This knowledge provides the foundation for understanding the opportunities for promoting the wellbeing of humans and other living organisms in the environment. It generates an awareness of the importance of our biodiversity and the unique role of humans in conserving, protecting and improving the quality of the biological environment for future generations.
The CSEC Biology Syllabus is redesigned with a greater emphasis on the application of scientific concepts and principles. It recognises the need for an understanding of some of the basic principles of Chemistry,
Physics and Mathematics, and, therefore seeks to strengthen the inter-relationship with these subjects. It also recognises the inter-relatedness among the topics in Biology, and social and environmental issues. Such an approach is adopted to develop those long-term transferable skills of ethical conduct, team work, problem-solving, critical thinking, and innovation and communication. It encourages the use of various teaching and learning strategies to inculcate these skills that will prove useful in everyday life, while at the same time catering to multiple intelligences and different learning styles and needs. It will provide a sound foundation to pursue the study of Life Sciences and related professions at the post-secondary level.
This syllabus will contribute to the development of the Ideal Caribbean Person as articulated by the
CARICOM Heads of Government in the following areas: respect for human life and awareness of the importance of living in harmony with the environment; demonstrates multiple literacies; independent and critical thinking and the innovative application of science and technology to problem solving. In keeping with the UNESCO Pillars of Learning, this course of study will also contribute to a person who will learn how to do, learn to live together and learn to transform themselves and society.

CXC 20/G/SYLL 13

1

AIMS
The syllabus aims to:
1.

develop an understanding of fundamental biological principles and concepts (such as structure and function relationships; unity in diversity; energy transduction), based upon practical and theoretical knowledge of living organisms and the environment;

2.

make accurate observations of biological material and phenomena, both in the field and in the laboratory; 3.

develop the ability to record information accurately;

4.

formulate hypotheses and plan, design and carry out experiments to test them;

5.

develop the ability to appraise information critically, identify patterns, cause and effect, stability and change and evaluate ideas;

6.

appreciate that although generalisations have predictive value, there are often exceptions to them;

7.

develop problem-solving and critical thinking skills;

8.

develop an awareness that principles of Chemistry, Physics, Mathematics and other disciplines are necessary for a proper understanding of Biology;

9.

recognise the dynamic nature of the interrelationships between organisms and their environment;

10.

develop a natural curiosity about living organisms and a respect for all living things and the environment; 11.

develop the ability to work independently and collaboratively with others when necessary;

12.

apply biological knowledge for further studies as well as in everyday life situations;

13.

acknowledge the social and economic implications of Biology;

14.

integrate Information Communication and Technology (ICT) tools and skills.

CANDIDATE POPULATION
The syllabus is designed for students intending to pursue further studies in science at the tertiary level as well as for students whose formal study of the subject is unlikely to proceed further.
CANDIDATE REQUIREMENTS
1.

Candidates should have been exposed to at least three years of science at the secondary level, which should provide an introduction to basic physical and biological principles.

CXC 20/G/SYLL 13

2

2.

Candidates should be concurrently studying or have done:
(a)

CSEC Mathematics or its equivalent;

(b)

CSEC English A (English Language) or its equivalent.

CLASS SIZE
It is recommended that practical classes accommodate a maximum of twenty-five students.

SUGGESTED TIME-TABLE ALLOCATION
It is recommended that a minimum of five 40-minute periods per week, including one double period, be allocated to the subject over a two-year period.

ORGANISATION OF THE SYLLABUS
The syllabus is arranged in three sections, namely:
SECTION A -

Living Organisms in the Environment

SECTION B -

Life Processes and Disease

SECTION C -

Continuity and Variation

SUGGESTIONS FOR TEACHING THE SYLLABUS
It is recommended that Section A be taught first, followed by Sections B and C.
The organisation of each section in the syllabus is designed to facilitate inquiry-based learning and to ensure that connections among biological concepts are established. Teachers should ensure that their lessons stimulate the use of all of the senses in learning as this will help students view science as a dynamic and exciting investigative process.
The general and specific objectives indicate the scope of the content including practical work that should be covered. However, unfamiliar situations may be presented as stimulus material in examination questions.
This syllabus caters to varying teaching and learning styles, with specific attention being drawn to the interrelatedness of concepts. The fourth column entitled, “Skills and Interrelationships” states which specific objectives are best suited for the assessment of Drawing (DR), Observation, Recording and Reporting (ORR),
Manipulation and Measurement (MM), Analysis and Interpretation (AI), and Planning and Designing (PD) skills. Whenever possible, a practical approach should be employed, with special attention given to the identification of variables and to the use of controls in biological investigations. Students should be encouraged to use information gathering tools and social networking media to aid investigation and teamwork. The need for repeated investigation and observations to arrive at meaningful conclusions should be emphasised.

CXC 20/G/SYLL 13

3

Column four also highlights connections between biological concepts and the fields of Chemistry, Physics,
Mathematics and other related disciplines. In order to make the course as relevant as possible, students’ awareness of the effect of science on society and on the environment should be encouraged. All aspects of the environment: social, biological and physical must be considered in totality.
Greater emphasis should be placed on the application of scientific concepts and principles and less on the factual materials, which encourage memorisation and short-term recall. Every opportunity should be made to relate biological studies to the environment, and to use an ecological approach whenever pertinent.
Biological principles should be illustrated by specific local and regional examples. Common names of organisms are acceptable.
The relationship between structure and function, cause and effect, stability and change is to be continually highlighted. Where appropriate, this relationship should be illustrated by the use of annotated diagrams.
The role of the teacher is to facilitate students’ learning of accurate and unbiased information that will contribute to a more scientifically literate society that is capable of making educated and ethical decisions regarding the world we live in.

CERTIFICATION AND DEFINITION OF PROFILES
The syllabus will be examined for General Proficiency certification.
In addition to the overall grade, there will be a profile report on the candidate's performance under the following headings:
(a)

Knowledge and Comprehension;

(b)

Use of Knowledge;

(c)

Experimental Skills.

Knowledge and Comprehension (KC)
Knowledge

The ability to: identify, remember, and grasp the meaning of basic facts, concepts and principles;

Comprehension

select appropriate ideas, match, compare and cite examples of facts, concepts and principles in familiar situations.

Use of Knowledge (UK)
The ability to:
Application

CXC 20/G/SYLL 13

use facts and apply concepts, principles and procedures in familiar and novel situations; transform data accurately and appropriately; use formulae accurately for computational purposes; 4

Analysis and Interpretation

identify and recognise the component parts of a whole and interpret the relationship among those parts; identify causal factors and show how they interact with each other; infer, predict and draw conclusions; make necessary and accurate calculations and recognise the limitations and assumptions inherent in the collection and interpretation of data;

Synthesis

combine component parts to form a new and meaningful whole; make predictions and solve problems;

Evaluation

make reasoned judgements and recommendations based on the value of ideas, information and their implications.

Experimental Skills – (XS)

Manipulation/Measurement

The ability to: follow a detailed set or sequence of instructions; use techniques, effectively; apparatus

and

materials

safely

and

make observations and take measurements with due regard for precision and accuracy.

Observation/Recording/Reporting

The ability to: select observations relevant to the particular activity; make accurate observations and minimise experimental errors; report and recheck unexpected results; select and use appropriate models of recording data or observations, for example, graphs, tables, diagrams; record observations, measurements, methods and techniques with due regard for precision, accuracy, and units; present data in an appropriate manner, using the accepted convention of recording errors and uncertainties; organise and present information, ideas, descriptions and arguments clearly and logically in a complete report, using spelling, punctuation and grammar with an acceptable degree of accuracy; report accurately and concisely using scientific terminology and conventions as necessary.

CXC 20/G/SYLL 13

5

Planning and Designing

The ability to: make predictions, develop hypotheses and devise means of carrying out investigations to test them; plan and execute experimental procedures and operations in an appropriate sequence; use experimental controls where appropriate; modify an original plan or sequence of operations as a result of difficulties encountered in carrying out experiments or obtaining unexpected results; take into account possible sources of errors and precaution in the design of an experiment; select and use appropriate equipment and techniques.

FORMAT OF THE EXAMINATIONS
Paper 01
(1 hour 15 minutes)

An objective test consisting of 60 multiple choice items.

Paper 02
(2 hours 30 minutes)

One compulsory data analysis question, two structured questions and three extended response questions.

Paper 03/1
School-Based Assessment (SBA)

School-Based Assessment will evaluate the achievement of the candidate in the Experimental Skills and Analysis and Interpretation involved in the laboratory and fieldwork. Candidates will be required to keep a separate practical workbook. CXC will require a sample of these for external moderation.

Paper 03/2
Assessment for
Private candidates only
(2 hours 10 minutes)

Alternate to the School-Based Assessment for private candidates.
This paper will examine the same skills as those tested in Paper
03/1. The focus, therefore, will be on Experimental Skills and Use of Knowledge (Analysis and Interpretation).

NOTES ON THE EXAMINATION
1.

There will be a combined Question Paper and Answer Booklet for Paper 02.

2.

The International System of Units (S. I. Units) will be used on all examinations papers.

WEIGHTING OF PAPERS AND PROFILES
The percentage weighting of each paper and profile is presented in Table 1.

CXC 20/G/SYLL 13

6

Table 1
Percentage Weighting of Papers and Profiles
PAPER 1
Multiple
Choice

PAPER 2
Structured and
Data Analysis

PAPER 3
SBA

TOTAL
RAW

TOTAL
%

60

36

-

96

48

Use of Knowledge

-

55

10

65

32.5

Experimental Skills



9

30

39

19.5

TOTAL %

60

100

40

200

100

PROFILES
Knowledge and Comprehension

REGULATIONS FOR PRIVATE CANDIDATES
Private candidates must be entered for examination through the Local Registrar in their respective territories and will be required to sit Papers 01, 02 and 03/2.
Paper 03/2 is a practical examination designed for candidates whose work cannot be monitored by tutors in recognised educational institutions. The Paper will be of 2 hours and 10 minutes duration and will consist of three questions. Questions will test the Experimental Skills and Use of Knowledge (Analysis and
Interpretation) profiles and will incorporate written exercises and practical activities.

REGULATIONS FOR RESIT CANDIDATES
Resit candidates must complete Papers 01 and 02 and Paper 03 of the examination for the year for which they re-register. Resit candidates may elect not to repeat the School-Based Assessment component, provided they re-write the examination no later than two years following their first attempt.
Candidates may opt to complete the School-Based Assessment (SBA) or may opt to re-use another SBA score which satisfies the condition below.
A candidate who re-writes the examination within two years may re-use the moderated SBA score earned in the previous sitting within the preceding two years. Candidates re-using SBA scores in this way must register as “Resit candidates” and provide the previous candidate number.
All resit candidates may enter through schools, recognized educational institutions, or the Local Registrar’s
Office.

THE PRACTICAL APPROACH
The syllabus is designed to foster the use of inquiry-based learning through the application of the practical approach. Students will be guided to answer scientific questions by a process of making observations, asking questions, doing experiments and analyzing and interpreting data. The CSEC Biology Syllabus focuses on the following skills.
CXC 20/G/SYLL 13

7

1.

Planning and Designing (PD)
(a)

Ask questions: how, what, which, why or where. (Students must be guided by their teachers to ask scientific questions).
Observation: Growth of plants are affected by their environment.
Example: Will plants that are grown using organic fertilizers grow taller than those that are grown using inorganic fertilizers?

(b)

Construct a hypothesis; the hypothesis must be clear, concise and testable.
Example: Plants grown using organic fertilizer will grow taller than those grown using inorganic fertilizer.

(c)

Design an experiment to test the hypothesis. Experimental reports must include the following: (i)
(ii)

an appropriate aim related to the hypothesis;

(iii)

list of materials and apparatus to be used;

(iv)

observations to be made or measurements to be taken;

(v)

precautions to be taken;

(vi)

method of controlling variables;

(vii)

clear and concise step by step procedure;

(viii)

display of expected results;

(ix)

use of results;

(x)
2.

problem statement;

possible limitations.

Measurement and Manipulation (MM)
(a)

Student’s ability to handle scientific equipment competently.
The list of equipment is:
(i)

Bunsen burner;

(ii)

Tripod stand with wire gauze;

(iii)

binocular and monocular light microscope;

(iv)

measuring cylinders (25-100cm3);

(v)

beaker (50-500cm3);

CXC 20/G/SYLL 13

8

(vi)

thermometer;

(vii)

ruler;

(viii)

stop watch/clock;

(ix)

balance;

(x)

boiling tube;

(xi)

test tubes and test tube holders;

(xii)

hand lens;

(xiii)

syringe.

(b)
(c)
3.

Student’s ability to take accurate measurements.
Student’s ability to use appropriate units.

Observation, Reporting and Recording (ORR)
(a)

Recording
Student’s ability to record observations and to collect, organise and present data.
Observations and data may be recorded in the following format.
(i)

(ii)

Table (Neatly enclosed)
Numerical: physical quantities in heading, units stated in heading, symbols, decimal points. Non-numerical: headings correct, details present.

(iii)

(b)

Prose
Written description of observations in the correct tense.

Graph
Axes labelled, correct scales, correct plotting, smooth curves/best fit lines, key to explain symbols if more than one dependent variable is being plotted.

Reporting
Student’s ability to prepare a comprehensive written report on their assignments using the following format:
(i)

Date (date of experiment).

(ii)

Aim/Purpose (what is the reason for doing the experiment).

(iii)

Apparatus and Materials (all equipment, chemicals and materials used in the experiment must be listed).

CXC 20/G/SYLL 13

9

(iv)

(v)

Results and Observations (see a above: Observation/ Recording/Recording).

(vi)
4.

Method/Experimental Procedure (logically sequenced, step-by-step procedure written in the past tense, passive voice).

Discussion and Conclusion (see 4 below: Analysis and Interpretation).

Analysis and Interpretation
Student’s ability to:
(a)
(b)

make accurate calculations;

(c)

identify limitations and sources of error, make a conclusion to either support or refute the hypothesis, compare actual results with expected results based on background/theoretical knowledge if they are different;

(d)

suggest alternative methods or modification to existing methods;

(e)
5.

identify patterns and trends, cause and effect, stability and change ;

analysing and interpreting results and observations and making conclusions.

Drawing (Dr)
The following guidelines should be used for drawing.
(a)

The drawing should be placed in a position on the page which will allow for neat and clear labelling.

(b)

If the drawing/diagram is included in the written material, it should be placed just before this material and should be referred to in your answer.

(c)

Drawings should be done in pencil. The use of coloured pencils is not recommended.

(d)

The drawing should be large enough so that all structures can be clearly drawn.

(e)

The drawing should be correctly proportioned and parts should be accurately

(f)

In order to get a smooth, unbroken line when drawing, lift the pencil from the paper as infrequently as possible until the line is completely drawn. This method will help to eliminate haphazard and sketchy lines.

(g)

When a large number of small structures are present in a specimen, draw only a few of them carefully, showing structural details.

(h)

Write labels in pencil.

(i)

Labels should be annotated (that is, accompanied by brief explanatory notes).

CXC 20/G/SYLL 13

10

positioned.

(j)

Label lines should never cross each other and should be horizontal where possible.

(k)

In drawings where only a few structures are being labelled, all labels should be written on the right of the drawing.

(l)

Drawings must have a full title and magnification. This is usually written below the drawing and underlined. The title tells the name of the structure or organism and the view from which the drawing was made.

CXC 20/G/SYLL 13

11

SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT
SECTION A is designed as an introduction to the rest of the syllabus. It is expected that in the teaching of this section, students will work in groups outside of the classroom in order to study the interrelationships between organisms and their environment and to better facilitate their appreciation of the diversity and complexity of these relationships.

GENERAL OBJECTIVES
On completion of this Section, students should:
1.

be aware that there is both diversity and similarity of form in living organisms;

2.

understand the importance of the abiotic environment to living organisms;

3.

understand that there is interdependence between living organisms and their environment;

4.

understand that there is a flow of energy through living organisms within the ecosystem;

5.

appreciate the finite nature of the ‘worlds’ resources and the significance of recycling materials in nature;

6.

be aware of the effect of human activities on the environment;

7.

apply the knowledge of the interrelationship of organisms with the environment to identify problems affecting the growth and survival of populations.

SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Students should be able to:
1.1. group living organisms found in a named habitat based on observed similarities and differences; Visible characteristics, such as hairiness, colour, shape, venation, number of legs and wings, and body segmentation of organs found in both plants and animals as appropriate.
Common names of organisms and groups are acceptable.

Nature walks.
Organise
students in groups to observe organisms
(plants and/or animals) in their natural habitat.

Skills: ORR; Dr.

1.2 classify organisms into taxonomic groups based on physical similarities;

Simple classification of all living organisms into the five kingdoms: Plantae, Animalia;
Fungi (mushroom), Prokaryotae
(Bacteria) and Proctotista
(amoeba). Further subdivision of the Animal Kingdom into Phyla, for example, Chordata which

Make drawings and construct tables to record observations. Continuity and
Variation
Skill: Dr.

CXC 20/G/SYLL 13

12

SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Use quadrats to investigate the distribution of species in a particular habitat; estimate the density of a particular species.
Calculate average
(mean).
Density = Total No. of organisms per unit area.
Use of pooters, bottles, jars, nets, sieves, quadrats, line and belt transects, mark, release and recapture methods to collect data on organisms from a named habitat.

Math - Simple statistical analysis.

Students should be able to: includes Classes (fish, reptiles, insects, birds mammals).
These are further classified to the level of species.
Modern classification uses
DNA sequences to determine ancestry. Refer to SO A 2.2;
B 1.1
Note: Flowcharts could be included with drawings under
Practical activities.
2.1 carry out a simple ecological study using the most appropriate collecting and sampling methods;

Habitats may include terrestrial and aquatic, for example, a tree, wall or small pond. Features of each habitat.
Relationship between organism and habitat – adaptations that enable the organism(s) to survive in that habitat. Relationship between equipment used and habitat and species being investigated. 2.2 distinguish between the following pairs of terms: (a) abiotic and biotic factors, (b) niche and habitat, CXC 20/G/SYLL 13

Ecology – the study of living organisms in their environment. Ecosystem- a community of living organisms sharing an environment. Environment – the abiotic (non-living chemical and
13

Data collection and presentation.
Skills: ORR; MM;
Dr; PD.

Skill: ORR.

SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Components of soil
– air (O2) and, water-holding capacity, mineral nutrients, pH and salinity. Chemistry Elements, mixture and compounds;
Oxidation;
Decomposition
Biodegradable;
Recycling;
Homeostasis.

Students should be able to:
(c) population and community, (d) species and population; physical) and biotic (living) factors. Habitat - the place where a particular organism lives. Niche – the role of an organism in an ecosystem.
Species – a group of individuals of common ancestry that closely resemble each other and are normally capable of interbreeding to produce a fertile offspring.
Population – members of a particular species living in a particular habitat.
Community – all the populations of different species found living in a particular habitat.

2.3 discuss the impact of the abiotic factors (soil, water, climate) on living organisms; Importance of soil in providing water, mineral nutrients and oxygen; importance of air in providing various raw materials: oxygen, carbon dioxide, nitrogen. Importance of light and temperature. Refer to
SO A 5.1.

Skills: ORR; MM.
3.1 identify the relative positions of producers and consumers in food chains; Construct food chains and simple pyramids.

Provide a number of organisms from which to construct a food chain and a food web.

Interdependence on living organisms. 3.2 identify from each habitat, a food chain containing at least four organisms; Terrestrial (arboreal and edaphic) and aquatic (marine and freshwater) habitats.

Construct food chains using organisms in each habitat. Energy relations.

CXC 20/G/SYLL 13

14

SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Students should be able to:
3.3 identify from each habitat: herbivore, carnivore and omnivore; Not to be confined to familiar domestic animals.

3.4 identify from each habitat, predator/ prey relationships; Terrestrial arboreal and edaphic) and aquatic (marine and fresh water) habitats.
Example of the application of predator relationship.
The use of ‘Biological Controls’.

3.5 construct a food web to include different trophic levels; Use of examples from the habitat(s) investigated. Students may be required to interpret a food web containing unfamiliar examples. Identify different trophic levels in food webs.

Energy Flow in an
Ecosystem.

3.6 explain the role of decomposers; Role of fungi and bacteria in converting complex compounds to simple substances.

Action of mould on bread, production of biogas from domestic organic waste material. ChemistryHydrolysis.
Enzyme.
Nutrient cycling.

3.7 assess the special relationships among organisms; Simple treatment of symbiotic relationships: parasitism, commensalism, mutualism using local examples, such as lice and ticks on mammals, epiphytes on trees, nitrogen fixing bacteria in root nodules of legumes. Give names of partners. Observations from a large tree. Examine root nodules, on the peanut plant. Evolution
Interdependence
of living organisms and their environment.

Link:
Predator/Prey
Relationships,
Natural Selection.

Skill: ORR.

4.1 explain energy flow within a food chain or web;

Simple diagram of non-cyclic energy flow from the sun.

Different forms of energy. 5.1 explain, with examples, the impact of the continual re-use of materials in nature;

Note the role of decomposers in the Carbon Cycle. Refer to SO
A3.6.

Nutrient cycling.

CXC 20/G/SYLL 13

15

SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

5.2 discuss the importance of and difficulties encountered in recycling manufactured materials; Consider biodegradable and non-biodegradable materials, collection, transport and storage; note economic factors.

Interpret data on waste management and pollution in the
Caribbean (See
Caribbean
Environmental
Outlook).

Chemistry and
Social Sciences.

6.1 describe the impact of human activities on natural resources; Energy, mineral, forest, marine, over population and over fishing.

6.2 explain the negative impact of human activity on the environment; Consider pollution by agricultural practices such as use of chemical fertilizers; products of industrialization and improper garbage disposal. Impact on eco-tourism. Students should be able to:

Alternative sources of energy.

Research projects.
(For example, collect data on use of agricultural chemicals). Loss of habitat, species; impact on human health.
6.3 assess the implications of pollution of marine and wetland environments; Refer specifically to impact on the health of ecosystems, aesthetic and economic benefits to small island states.

6.4 discuss current and future trends regarding climate change; Refer to increase in greenhouse gases, rising global temperatures, rising sea levels and ocean acidification.
Particular attention should be paid to the vulnerability of small island states to climate change
(See Barbados Action Plan). http://www.unep.ch/regionalse as/partners/sids.htm.

CXC 20/G/SYLL 13

16

Research and interpret data on pollution of marine environments in the Caribbean, for example, Coral reefs. ChemistryNatural versus synthetic Social Science –
Impact of human activity. SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

6.5 suggest means by which the environment could be conserved and restored; Consider effect of the change in practices; example use of natural materials in agriculture, conservation methods, education, monitoring strategies, organic agriculture. Research projects.
(For example, describe a project involving conservation to include a listing the various strategies).

7.1 discuss the factors that affect the growth and survival of populations including human populations. Include competition for food and space; effects of disease, pests, invasive species, natural disasters.

Research projects.
Analyse graphical data showing effect of different factors on natural populations, for example, giant snail. SKILLS AND
INTERRELATIONSHIPS

Students should be able to:

Skill: AI.

Suggested Teaching and Learning Activities
To facilitate students’ attainment of the objectives of this Section, teachers are advised to engage students in the teaching and learning activities below. These activities are designed to promote inquirybased learning and cater to students with various learning styles.
1.

Construct a poster depicting either a terrestrial, marine or freshwater food web that you would find in your country. Showcase how competition, adaptation, and energy flow play key roles in the process. 2.

Watch the videos on “Symbiotic Relationships” at PBS.org. http://www.pbs.org/wnet/nature/lessons/symbiotic-strategies/video-segments/1496/. Identify local examples of parasitism, commensalism, and mutualism in the Caribbean.

3.

Create a PowerPoint presentation, movie or poster on the importance of Marine and Coastal areas in the Caribbean (Interpret data on pages 56-63 in the Caribbean Environmental Outlook). http://hqweb.unep.org/geo/GEO_Regions.asp Identify at least TWO threats to these fragile ecosystems. 4.

Design a “Wanted” flyer for a criminal!! In this case, the criminal is an invasive species in the
Caribbean, for example, the Small Indian Mongoose (Herpestes auropunctatus) and Lion fish.
Invasive species are considered one of the greatest threats to island biodiversity and habitat loss.
See examples of “Wanted Flyers” below: http://science.nature.nps.gov/im/units/pacn/outreach/Invasive_species_trading_cards/NPSA_tradi ng_cards.pdf

CXC 20/G/SYLL 13

17

SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT (cont’d)
5.

Discuss the main issues addressed by the 1994 Barbados Action Programme on the sustainable development of Small Island Developing States (SIDS).

6.

Research the negative effects of climate change on your own community and write a short literary piece (short story, song, or poem) to present to the class.

7.

Organise a debate regarding the positive and negative impacts of tourism development in your country and discuss the need for and importance of sustainable development in the Caribbean.

8.

Arrange a debate on high population growth or high consumerism as principal causes of global environmental problems. See reports from the 1992 Rio Conference, the 1994, Barbados
Programme of Action. (Note: Caribbean GEO).

9.

Choose an environmental issue that concerns you (for example, the lack of recycling and the accumulation of plastics in the oceans which result in the death of marine mammals, invertebrates and sea turtles) or watch the video “Losing
Paradise”
http://www.youtube.com/watch?v=vCanbznET3Y . Write a convincing policy brief to be sent out to business owners, schools, and/or government officials in an effort to tackle this problem.

10.

Interpret the data on forest cover in the Caribbean as presented in the Caribbean Environment
Outlook by the United Nations Environmental Programme (UNEP) and CARICOM. http://hqweb.unep.org/geo/GEO_Regions.asp (Pages 34-38; http://hqweb.unep.org/geo/pdfs/Caribbean_EO_final.pdf).

11.

Interpret the data on the state of “Waste Management” and “Pollution” in the Caribbean. (See pages 44-48 in the Caribbean Environmental Outlook); http://hqweb.unep.org/geo/pdfs/Caribbean_EO_final.pdf. CXC 20/G/SYLL 13

18

SECTION B - LIFE PROCESSES AND DISEASE
The life processes will largely be illustrated in humans and flowering plants because these are the two groups with which students are most familiar, and about which they should have some degree of understanding.
Comparisons with other organisms should be included where appropriate. Details of anatomical structure are used to illustrate the relationships between structure and function.
There should be a focus on the interdependence of the internal processes occurring at the organ and cellular levels in maintaining the organism in a healthy state.
Diseases common in the Caribbean variously affect the quality of life of its people, the efficiency of its human resources and its economy. The purpose of this aspect of the syllabus is to make students sufficiently aware of the problems and their implications so that they can recognise and deal with them in their own environments.

GENERAL OBJECTIVES
On completion of this Section, students should:
1.

know the structure of an unspecialised cell (plant and animal) and appreciate the functions of the main cell structures and of cell specialisation;

2.

understand that nutrition is the means by which living organisms obtain their energy and material requirements, and this occurs in different ways;

3.

understand that respiration is the means by which energy is made available for carrying out life processes; 4.

understand the role of transport, storage and defense in living organisms;

5.

understand the processes by which living organisms get rid of metabolic waste and regulate body fluid concentration;

6.

understand the mechanisms of movement and appreciate its role(s) in living organisms;

7.

understand that organisms detect and respond to changes in their external and internal environment;

8.

understand that organisms increase in mass, size and complexity during their lives;

9.

understand the processes by which life is perpetuated;

10.

appreciate the social and economic importance of disease control in plants and animals.

CXC 20/G/SYLL 13

19

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Cell wall, cell membrane, nucleus, cytoplasm, vacuoles, mitochondrion, chloroplast. Microbes to include bacterium, Protista, for example, amoeba.
Simple structure of a bacterium to include nucleoid, cell wall, capsule and flagellum.

Draw and label cells and cell structures from electron micrographs
(mag.x2,000).

Structure and function relationships

Students should be able to:
1.

Cells

1.1 compare the structure of the generalised plant and animal cells, and selected microbes;

1.2 distinguish between cell wall and cell membrane; mitochondrion and chloroplast; 1.3 relate the structure of organelles to their functions; Simple treatment of chloroplast; mitochondrion; vacuole; nucleus. For example, nucleus: chromosomes carry genetic information in the form of
DNA.
Refer SO C1.1

1.4 differentiate between plant and animal cells;

Reference to plant cells as characterised by the presence of a cell wall, large vacuoles and chloroplasts.
Relate structure to function.

CXC 20/G/SYLL 13

20

Skill: Dr.

Examine a variety of cells, for example, cells of
Allium (purple onion), Rhoeo discolor, Elodea, prepared slides of blood cells, nerve cells and skin.
Construct models using plasticine or other materials found around the home or laboratory. Chemistry - DNA; proteins, chlorophyll; carbohydrates. SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Examples of tissues from both plants and animals.
Consideration that a number of different tissues (for example, epidermis, xylem, phloem) come together to form organs (leaf, stem) and organ systems (transpiration; translocation). Refer to SO B.4.7, 4.11.

Examine and draw the cross section of a stem or root as seen under the light microscope

Hierarchy of cells, tissues, organs; organ systems; organism; population; community, ecosystem.
Refer to SO A2.2.

Importance of diffusion and osmosis in transporting substances in and out of cells and from one cell to another in all living organisms. Reference to the cell membrane as a differentially permeable membrane, contrast with cell wall which is freely permeable.

Carry out simple investigations to illustrate the movement of particles (molecules and ions). Identify everyday instances of these processes occurring. Students should be able to:
1.5 explain the importance of cell specialisation in multicellular organisms;

1.6 explain the processes of diffusion and osmosis; 1.7 discuss the importance of diffusion, osmosis and active transport in living systems.

2.

Skills: ORR; DR

Cite examples of each process occurring in living organisms.
For example, diffusion across membrane of Amoeba, gas exchange across respiratory surfaces, absorption in small intestine, active uptake of mineral ions by plant roots.

Physics-Osmosis, diffusion. ChemistryParticulate nature of matter; ions.
Skills: ORR; MM;
AI.

Physics and
Chemistry-Osmosis,
diffusion.

Nutrition

2.1 distinguish among heterotrophic, autotrophic and saprophytic nutrition;

CXC 20/G/SYLL 13

Simple inorganic substances used by plants compared to complex organic substances consumed by animals and fungi. Refer to SO A2.7.

21

Identify sources of food for a named organism for each type of nutrition. Chemistry-Water, nitrogen, carbon dioxide, starch, sugars, protein.
Photosynthesis;
respiration; decomposers. Energy relations.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Simple treatment involving an equation to summarize the process;
- the evolution of oxygen as a result of the splitting of water by light energy;
- the subsequent reduction of carbon dioxide to a carbohydrate; the chloroplast as the site of the reaction;
- role of chlorophyll;
- the fate of products
(metabolised to provide energy or stored).

Test for evolution of oxygen using water plant.
Carry out controlled experiments to demonstrate that light and chlorophyll are necessary for photosynthesis; Tests for end products, starch or reducing sugar. Chemistry Oxidation and reduction. The external features and the internal structure of a dicotyledonous leaf as seen in cross section under the light microscope. Emphasise adaptations for photosynthesis (stomata; intercellular spaces; chloroplasts in palisade layer close to epidermis).

Draw and label the external features and internal structure of a dicotyledonous leaf as seen in cross section.

Role of water for opening of stomata; diffusion of CO2.

Use green and variegated leaves of hibiscus.

Investigations to include temperature, water and CO2.

Students should be able to:
2.2 describe the process of photosynthesis in green plants;

2.3 relate the structure of the leaf of a flowering plant to its function in photosynthesis; 2.4 explain how environmental factors affect the rate of photosynthesis; CXC 20/G/SYLL 13

22

Skills: ORR; MM.

Skills: ORR; Dr.

ChemistryProperties of some biomolecules.
Physics-Forms of energy, wavelengths of light; Fluorescent molecules. Skills: ORR; Dr;
MM, PD.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Students should be able to:

2.5

2.6

discuss the importance of minerals in plant nutrition using nitrogen and magnesium as examples; Emphasis on the importance of nitrogen in the formation of proteins and magnesium in the formation of chlorophyll. Investigate the effect of the lack of nitrogen on seedlings.

perform tests to distinguish among food substances; Starch, protein, lipids, reducing and non-reducing sugars; chemical and physical properties
(solubility) of carbohydrates, proteins, lipids; hydrolysis and condensation
(dehydration synthesis).

Test for proteins
(Biuret), fats
(grease spot, ethanol – emulsion tests), starch (iodine), reducing sugars
(Benedict’s
solution). Note the necessity for hydrolysis and neutralisation in testing for nonreducing sugars.

2.7 relate the structures of the human alimentary canal to their functions;

Simple diagrams of the alimentary canal and internal structure of a tooth required. Mastication and the role of teeth in the mechanical breakdown of food to be included. CXC 20/G/SYLL 13

23

ChemistryOxidation and reduction. Skills: PD; ORR;
MM; AI.
Chemistry–Redox
solubility, Organic
Chemistrycondensation/hyd
rolysis.
Skills: ORR; MM.

Skill: Dr.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Students should be able to:
2.8 explain the role and importance of enzymes; Inclusion of catalysis.
Properties of enzymes, role of digestive enzymes in the mouth, stomach and pancreatic enzymes in the small intestine.

Chemistry - Rate of reaction, properties of proteins. Skills: ORR; MM;
AI.

2.9 investigate the effect of temperature and pH on the activity of the enzymes catalase or amylase;

Candidates may be asked to deduce from tables and graphs the effects of temperature and pH on enzyme activity.

Chemistry-Acids and bases rate of reaction; Math Simple graphs.
Skills: ORR; MM;
AI and PD.

2.10 describe what happens to the products of digestion after their absorption;

Simple diagram of villi and role in absorption of products of digestion.
Transport to the liver and assimilation to be included, that is, how products are used and what happens to excess. Link to blood sugar control
Refer to SO B5.2, 5.3

Homeostasis.

2.11 discuss the importance of a balanced diet in human. Components of a balanced diet (including vitamins and minerals and their roles).
The results of their deficiency or surplus
(malnutrition).
The effects of age, sex and occupation on dietary needs.
Vegetarianism
Dietary recommendations for treating and preventing named deficiency and physiological diseases – diabetes and hypertension.

Nutrition/Special diets. CXC 20/G/SYLL 13

24

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Students should be able to:
3.

Respiration

3.1 describe the process of aerobic respiration; Involvement of enzymes in releasing energy as ATP.
Distinguish between respiration and breathing.

ChemistryEndothermic and exothermic reactions.
Physics - First and second law of thermodynamics. Simple treatment. A chemical and word equation to show the starting materials and final products of aerobic respiration is required. 3.2 distinguish between aerobic and anaerobic respiration;

Include the production of lactic acid in muscle, alcohol and carbon dioxide in plants, production of bio-gas from organic matter.

Simple investigations to show the products of anaerobic respiration in yeast. ChemistryReactions involved in making bread and in vigorous exercise. Skills: MM; ORR;
AI.

3.3 describe the mechanism of breathing in humans and gaseous exchange in flowering plants;

Simple diagrams to show the relationship between the trachea, the bronchi, alveoli and lungs and the diaphragm and ribcage required. The necessity for a continuous supply of oxygen and the removal of waste products to be included.
Oxygen debt.
Refer to SO B1.7, 3.2.

Use of model of the thorax.

Physics-Pressure,
Diffusion.

Note limitations. Skills: Dr, AI.

3.4 identify characteristics common to gaseous exchange surfaces;

Emphasis on mechanisms for increasing surface area in humans, fish and plants.
Refer to SO B1.7.

Examine lungs of a mammal, gills of fish and various types of leaves. Skill: Dr.

CXC 20/G/SYLL 13

25

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)

SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

For example, nicotine addiction, damage to the lining of the lungs, cancercausing effects and reduction in the oxygen carrying capacity of the blood. Marijuana addiction, acute chest illness, obstruction of airways (no further details required).

Interpret smoking data worldwide and for the
Caribbean
(cigarette use, death rates, cancer incidence).

Drug abuse and health. 4.1 explain the need for transport systems in multi-cellular organisms;

The limitations of simple diffusion. Comparison with single celled organism such as the amoeba. The relationship between surface area and volume.

Make models, such as, cubes of different sizes and compare their surface area/volume ratio.

ChemistryDiffusion
Mathematics –
Calculating area and volume.

4.2 identify the materials which need to be transported in animals and plants; Oxygen, carbon dioxide, hormones, mineral nutrients, glucose and amino acids.

4.3 describe the structure and function of the circulatory system in humans; Structure and function of the heart. Names of blood vessels supplying lungs, kidney, liver, brain, intestine only. Draw diagrams to show differences in the structures of arteries, veins and capillaries.
Examine
external and internal features of fresh or preserved specimens of mammalian hearts.

Skills: ORR; Dr.

Students should be able to:
3.5 discuss the effects of smoking. 4.

Transport

CXC 20/G/SYLL 13

26

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/
EXPLANATORY NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Students should be able to:
4.4 relate the structure of the components of blood to their function;

Diagrams of red and white blood cells required. Use prepared slides only to show blood cells. Do not use fresh samples. Skill: Dr.

4.5 describe the role of blood in defending the body against disease;

Include the clotting mechanism; the role of phagocytes and natural immunity. 4.6 explain how the principles of immunisation are used in the control of communicable diseases;

As demonstrated by artificial immunity via vaccines. Refer to SO C5.4, 6.2.

Antigen/antibody, variation, natural selection .

4.7 explain how the structure of xylem vessels is suited for their function;

Hollow tubes- non-living with lignified walls; no end walls- allow for a continuous flow of water.

Physics-Cohesion, adhesion, tension.
Skill: Dr.

4.8 discuss the role of the process of transpiration in plants; Transpiration stream from roots to leaves to be included. Refer to SO B4.2.

Observe small herbaceous plant placed in coloured water.

4.9 describe the effect of external factors on transpiration; Light intensity, temperature, humidity, and air movements should be included.

Carry out controlled investigations.

Simple treatment of root length, cuticle thickness, water storage.

Observe succulent, xerophytic plants. 4.10 discuss adaption in plants to conserve water;

4.11 explain how the structure of the phloem is suited to its function; CXC 20/G/SYLL 13

Source ------>

27

Sink

Skill: ORR.

Translocation; storage organs; growing points.
Formation of fruits/seeds; germination.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

4.12 identify the products stored in plants and animals and the sites of storage;

Roots, stems, leaves, fruits, seeds in plants; the liver, fat deposits in animals to be included. Detailed structure of storage organs not required. Carry out food tests for starch, sugars and oil in storage organs.

Chemistry-Sugar, starch, fats.

4.13 discuss the importance of food storage in living organisms. Storage as a means of overcoming the need for continuous food intake or manufacture, providing for periods of scarcity, providing for special functions, such as, production of sexual or vegetative reproductive structures, development of embryos. Draw and annotate stages in germinating seeds; Draw buds from plant storage organs
(stems and tubers). Physics-Energy.
Chemistryconversion of simple soluble substances to insoluble macromolecules.

Students should be able to:

5.

Skills: MM, AI.

Skill: Dr.

Excretion

5.1 distinguish between egestion and excretion; Undigested material versus bilirubin in faeces, and urea in urine.

Metabolism.

5.2 discuss importance of excretion in organisms; Implications of toxicity.
For
example, carbon dioxide, heat, urea, water, oxygen, calcium oxalate and tannins. ChemistryOxygen, carbon dioxide, water.

the living 5.3 state how metabolic wastes are excreted from plants and animals;

Leaf fall, loss of bark and storage in plants; lungs, skin, urinary systems in humans to be included.

5.4 relate the kidney to its osmoregulatory and excretory functions.

Highlight structure of the urinary system and kidney tubule; The function of the parts. Mention kidney failure and dialysis.
Role of ADH in homeostasis.

CXC 20/G/SYLL 13

28

Annotated simple diagrams of the gross kidney structure and that of the nephron to illustrate the production of urine required.

Chemistry Dialysis, Filtration contrast with
Osmosis.
Skill: Dr.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

The distinction should be made between:

Germinate peanuts or kidney beans or any appropriate seeds. Skills: ORR; Dr; AI;
MM.

Examine a human skeleton.

Physics-Centre of gravity. Simple line drawing to show the relationships. Note origin and insertion of muscles. Physics- Moment of a force, efficiency levers.

Students should be able to:
6.

Movement

6.1 distinguish between growth movements in plants and movement in animals; (a)

growth movement as shown by germinating seedlings, Refer to SO B7.2 and
B8.1.

(c)

Locomotion/whole movement as illustrated by animals.

6.2 relate the structure of the skeleton to its function in humans;

Functions to include protection, support, locomotion, blood formation. 6.3 discuss the importance of locomotion in animals; Comparison with flowering plants; make reference to role in nutrition and reproduction. 6.4 describe the mechanism of movement in a human fore limb.

The relationship between the bones and muscles of a limb. Behaviour of antagonistic muscles; types of joint, action at moveable joints. Draw, label and annotate a simple diagram of the long bone of a fore limb.

CXC 20/G/SYLL 13

29

Skill: Dr.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

The response of stems and roots of seedlings to light, touch and gravity. Relate observations to the behaviour of plants in natural situations.
Refer to SO B6.1; 4.13.

Carry out controlled investigations; make observations; record and report as appropriate. Physics - Light and gravity. Students should be able to:
7.

Irritability

7.1 define 'stimulus' and
'response';
7.2 describe the response of: (a) green plants to stimuli; Role of auxins not required.

Skills: ORR; PD;
MM.

The response of invertebrates for example, millipedes, earthworms or woodlice. Construct simple choice chambers. Record observations. 7.3 define receptor and effector; Sense organs, muscle and glands. Leaf, petiole, apical meristem. Reaction to hot objects, insect bites. 7.4 explain why the response to stimuli is important for the survival of organisms; Reference to investigations with green plants and invertebrates in SO B7.2.

7.5 explain the relationship among the receptor, the central nervous system and the effector; Emphasis on the coordinating function of the brain and spinal cord and the roles of sensory and motor neurones.

(b) invertebrates to variations in light intensity, temperature and moisture; CXC 20/G/SYLL 13

30

Skill: AI.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

7.6 explain a simple reflex action; Use of simple flow diagrams to show the pathway along which the impulse travels in the reflex. Diagrams showing a spinal cord and spinal nerves not required.

Investigate changes in pupil size in response to changes in light intensity, using mirrors, or the knee jerk reflex. 7.7 describe the functions of the main regions of the brain;

Cerebrum, cerebellum and medulla. Use models and charts. 7.8 discuss the physiological, social and economic effects of drug abuse;

Include alcohol and one illegal drug. Mention the use and abuse of prescription drugs, for example, diet pills, tranquilisers, steroids, caffeine and analgesics (painkillers). Refer to SO B7.6, 7.7.

Research project. Research and interpret data on drug abuse in your territory.

ChemistryReactions of alcohol. Cross section or longitudinal section of the eye required.
Role of rods and cones as specialized receptor cells.
Refer to SO B1.5.

Examine dissected eye of a mammal.

Physics-Lenses.

Students should be able to:

7.9 relate the structure of the human eye to its functions as a sense organ;

CXC 20/G/SYLL 13

31

Skill: AI.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATO
RY NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Students should be able to:
7.10 explain accommodation; sight defects and the corrections of each;

Long and near sightedness; the use of corrective lenses; glaucoma. Physics –Light and image. 7.11 relate structure of the human skin to its function in temperature regulation and protection. Role of skin structures in temperature control as an example of homeostasis is required. Refer to SO B 5.4.

Skills: ORR; Dr.

Mention skin care and the effect of chemicals. The importance of melanin and SPF (simple treatment only). Discuss the skin bleaching phenomenon.
8. Growth
8.1 make deductions from simple investigations designed to demonstrate growth in living organisms; Examples could involve measuring changes in length, mass or surface area using roots, leaves, or other suitable material or counting the number of leaves in a named plant from seedling to fruiting plant. Include cell division in meristem;
Comparison of growth in plants and animals.

Conduct simple exercise to investigate patterns of growth. Draw and interpret graphs
(growth curves, histograms) from given data.

Skills: ORR; Dr;
MM, AI, PD.

Draw, label and annotate the external and internal structures of a seed.

Skill: Dr.

Refer to Mitosis SO C4.2.
8.2 describe the structure of a dicotyledonous seed;

Functions of the seed.
Refer. S.O. B. 4.12; 4.13.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
CXC 20/G/SYLL 13

32

SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Include breakdown of food stores and translocation to growing points.
Refer To SO B4.12, 8.1.

Use food tests to compare the food substances found in cotyledons before and after germination. Chemistryhydrolysis.

Students should be able to:
8.3 describe the processes taking place within a seed during germination.

9.

Reproduction

9.1 compare sexual and asexual reproduction;

Explanation that sexual reproduction leads to variation in the off-spring while asexual reproduction is conservative -offspring identical to the parent. Refer to SO C 4.2-4.6.

9.2 describe the structure and function of the reproductive systems in humans;

Male and female reproductive systems. Functions of the various parts.

9.3 describe the menstrual cycle;

The roles of oestrogen and progesterone and the effect of pregnancy on the menstrual cycle to be included. Include pituitary/gonads. 9.4 outline the mechanism for bringing gametes together, their fusion and the development of the embryo in humans;

Include implantation, functions of the amnion, placenta and umbilical cord.

9.5 discuss the advantages and disadvantages of various methods of birth control;

For example, natural, barrier, hormonal and surgical methods. Consider social aspects. CXC 20/G/SYLL 13

Genetic variation.

Label and annotate given diagrams. Genetic variation and meiosis.
Skill: Dr.

33

Use models, charts. SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

9.6 discuss the transmission and control of Acquired
Immune Deficiency
Syndrome (AIDS) and gonorrhoea; Implications of sexually transmitted infections
(STI’s). Include causative agents. Mention prevention, treatment and control.

Research and interpret Human
Immunodeficiency
Virus (HIV) incidence data in the Caribbean.

Genetic variation, mutations, natural selection, evolution. 9.7 relate the parts of a flower to their functions;

Knowledge of: petals, sepals, anther, filament, stigma, style, ovary, ovules, embryo sac, micropyle and carpel required.

Draw, label and annotate local specimens. Skills: Dr; ORR.

9.8 compare the structure of an insect pollinated flower and a wind pollinated flower;

Names of pollinating agents required. Examine and draw the various parts of an insect and wind pollinated flower.

Skills: ORR; Dr.

9.9 distinguish between the processes of pollination and fertilisation;

Means by which male and female gametes are brought together and their fusion to form the zygote of a flowering plant.
Include cross and selfpollination.

9.10 explain how fruit and seed formation occur after fertilization;

Knowledge of the processes in dicotyledon plants only.

Students should be able to:

CXC 20/G/SYLL 13

34

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

9.11 describe fruit structure including adaptations for fruit and seed dispersal. At least one example of water, wind, mechanical and animal dispersal methods.
Mention the importance of dispersal. Draw examples of fruits and seeds to show adaptations for dispersal.

PhysicsArchimedes principle, density.

10.1 distinguish among pathogenic, deficiency, hereditary and physiological diseases;

Include examples of each.

10.2 identify the stages in the life cycle of a mosquito;

Include habitat and mode of life of each stage.

Collect eggs and larvae of mosquitoes. Make observations and drawings of complete metamorphosis.

10.3 discuss the role of the mosquito as a vector in the transmission of pathogenic diseases;

Knowledge of malaria, dengue, yellow fever required. Collect and analyse data on the incidence of these diseases in the territory.

10.4 suggest appropriate methods of control of each stage of the life cycle of mosquito;

Refer to SO B10.2

10.5 discuss the treatment and control of the four main groups of disease;

The role of diet and exercise in controlling physiological diseases: hypertension and diabetes to be included.
Knowledge of insulin and glucagon required.
Refer to SO B 2.11; 4.5; 9.6.

Students should be able to:
Disease

CXC 20/G/SYLL 13

35

Immunity; nutrition; genetics.

Skill: Dr.

SECTION B - LIFE PROCESSES AND DISEASE (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Emphasize loss of productivity, loss of human life, livestock and agricultural crops.
Refer to SO A7.1.

Display and interpret statistical data from local examples. Social Science.

Students should be able to:
10.6 discuss the social, environmental and economic implications of disease with reference to both plant and animal diseases.

Suggested Teaching and Learning Activities
To facilitate students’ attainment of the objectives of this Section, teachers are advised to engage students in the teaching and learning activities below. These activities are designed to promote inquiry-based learning and cater to students with various learning styles.
1.

Create a 3D model of a plant/animal cell OR write a first person narrative from the perspective of a particular type of cell, for example, “I’m Woody, the plant cell..."

2.

Carry out simple controlled investigations to monitor the growth of seedlings for a period of one month. Manipulate variables (for example, sunlight, water, nutrients, soil type), take measurements and report the findings.

3.

Visit the Malaria website from the nobelprize.org and play both the “Mosquito” and the “Parasite” games on the site. Familiarise yourself with the relationship between Plasmodium (the human parasite), the mosquito (the vector) and humans (the host). http://nobelprize.org/educational/medicine/malaria/.

4.

Work in groups to write short newspaper articles on the human body systems and the diseases that affect each (for example, the reproductive system – STIs, prostate cancer, cervical cancer).

5.

Interpret health data by investigating the number of persons in your country who suffer from diabetes and cancer. What are the causes, incidence rates and treatments available in your area?

6.

The Caribbean region is the most heavily affected by HIV/AIDs after Sub-Saharan Africa. Interpret
HIV/AIDS data on the Caribbean as given by the United Nations. UNDP Report 2009. AIDS Epidemic
Update. http://data.unaids.org/pub/Report/2009/jc1700_epi_update_2009_en.pdf.

7.

Make educational flyers to post around your town to educate the public on facts and myths about
HIV and other STIs.

8.

Compare the anatomy of an animal of your choice to the anatomy of a human.

9.

Create posters to highlight the structure and function of a body organ of your choice. The poster should be a creative in describing function associated, diseases and disorders, and whether a person can live without the organ.

CXC 20/G/SYLL 13

36

SECTION C - CONTINUITY AND VARIATION
The teaching of Section C should highlight the implications of variation. The simple treatment of meiosis is deliberate; it is important that the consequences of the process be appreciated. Use of this knowledge for improved efficiency in agriculture should be considered.
Note to Teacher: Biological evolution refers to genetic changes in the heritable traits in a population over multiple generations and is distinct from the origins or creation of Life. Scientists agree that evolution is the central-most concept in biology and provides a well-supported explanation for the biodiversity of life and how species adapt to new challenges. In particular, the treatment of evolution in the syllabus is of great importance to Small Island Developing States (SIDS) such as those found in the Caribbean. Our territories are faced with drastic changes due to human activity, overpopulation, limited resources, susceptibility to natural disasters, overfishing, deforestation and other pressures all of which pose a risk to the survival of species. Basic treatment of Biological evolution combined with genetics can enhance awareness and enable students to make more educated decisions regarding the environment. It is noteworthy to mention that in science the word “theory” is generally defined as an explanation that is firmly supported by evidence and widely accepted within the scientific community. Finally, the importance and applications of genetic variation and biological evolution in agriculture, healthcare, technology, and conservation should be noted.

GENERAL OBJECTIVES
On completion of this Section, students should:
1.

understand the “species” concept and the two major forms of speciation;

2.

understand the importance of genetic variation in species;

3.

understand the concept of the gene as it pertains to DNA, chromosomes and allele;.

4.

understand the role of genes and heredity in determining how traits can be altered and inherited by asexual and sexual means;

5.

understand natural selection, mutation, gene flow, and genetic drift as mechanisms for biological evolution; 6.

understand the evidence for biological evolution and the importance and applications of biological evolution in terms of healthcare, food technology, forensic science, and conservation biology;

7.

appreciate the social and ethical implications of genetic engineering.

CXC 20/G/SYLL 13

37

SECTION C - CONTINUITY AND VARIATION (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

1.1 distinguish among
DNA, chromosomes, genes and alleles;

DNA (deoxyribonucleic acid) as nucleic acid that contain all genetic information.
Gene as a portion/segment of DNA that carries information to produce a specific protein.
Chromosome as DNA and protein (histones). Haploid as the ‘n’ number of chromosomes. Diploid as the ‘2n’ number of chromosomes. Alleles as two or multiple forms of the same gene.

Construct models of the structure of
DNA and chromosomes. Relationships between gene; allele; DNA; chromosome protein.

2.1 describe the process of mitosis; Emphasis on its importance for maintaining species chromosome number.
Mention the replication of chromosomes. Names of stages are not required.
Refer to SO B9.1.

Construct models. Skill: Dr.
Significance of mitosis in growth and asexual reproduction. 2.2 explain the role of mitosis in asexual reproduction; Include at least two examples of asexual reproduction in plants such as sugarcane cuttings and
Bryophyllum leaves.

Genetic variation Genotype maintained. 2.3 explain why asexual reproduction gives rise to genetically identical offspring; Cloning as the reproduction of populations of genetically identical individuals.

Tissue culture,
Human cloning.
Ethical issues.

Students should be able to:

CXC 20/G/SYLL 13

38

SECTION C - CONTINUITY AND VARIATION (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Simple treatment to include only homologous pairs, crossing over, separation of homologous chromosomes and subsequent separation of chromatids. Names of stages not required.

Construct models. Formation of gametes (pollen; ovule; ovum; sperms). Students should be able to:
2.4 describe the process of meiosis; 2.5 state the importance of halving of chromosome number in the formation of gametes;
2.6 explain the role of meiosis in the transmission of inheritable genetic characteristics; Role of crossing over random assortment and recombination in genetic variation (benefits of sexual reproduction).

2.7 explain the meaning of the following terms: dominant trait, recessive trait, codominance, genotype, phenotype, homozygous and heterozygous; Codominance: blood group inheritance in humans.

2.8 explain the inheritance of traits (dominant and recessive genes);

Examples to include Sickle cell anaemia, and albinism.
Genetic diagrams required.

CXC 20/G/SYLL 13

39

SECTION C - CONTINUITY AND VARIATION (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Observe and record plant and animal variations in your community, for example, hibiscus flowers, frogs, fishes, birds. Stress variations within a species, for example, humans and tomatoes. Adaptation.

Students should be able to:

2.9 predict the results of crosses involving one pair of alleles in the heterozygous, homozygous dominant and recessive conditions; Include Punnet squares and pedigree charts to show dominant, recessive and codominant traits. Include genotypic and phenotypic ratios. Students should be able to identify the various phenotypic ratios obtained from crossing homozygous and heterozygous parental genotypes. 2.10 describe the mechanism of sex determination and inheritance of sex linked diseases in humans; Include example of sex linked disease such as haemophilia and colour blindness. 3.1 explain how genetic variation arises;

Sexual reproduction; mutation. 3.2 explain why genetic variation is important;

Variation makes it less likely that a change in environmental conditions will wipe out an entire species. CXC 20/G/SYLL 13

40

SECTION C - CONTINUITY AND VARIATION (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

3.3 distinguish between continuous and discontinuous variation in populations;

Example: foot size, presence or absence of horns in cattle, pod size, tongue rolling, and leaf size. Mention genetic and environmental effects.

Carry out a survey on appropriate characteristics; for example, observe and record the range of variation in a particular feature of any kind of organism. Skills: ORR; PD;
AI.

4.1 define a species;

Include biological species concept (group of closely related organisms that are able to interbreed and produce fertile offspring).
Give examples of species of birds, plants that can interbreed. When two unrelated species mate, their offspring are not viable or if survive will be infertile, for example, the mule. Refer to SO A2.1, 2.2.

4.2 describe how new species are formed;

Two types:
-Speciation caused by physical geographic separation such as a river forming, colonizing a new island or rise of a mountain range (occurs with loss of habitat or the formation of new habitat);
–Speciation caused by ecological and behavioral differences such as courtship behaviour/ differences in coloration. Note: Over time, species can also go extinct due to hunting/habitat loss/disease, for example,
Caribbean Monk Seal.

Students should be able to:

CXC 20/G/SYLL 13

41

Make drawings to depict both types of speciation mechanisms.

SECTION C - CONTINUITY AND VARIATION (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

Natural selection as a process by which a population retains those genes which makes it adapted to its habitat.
Natural selection normally preserves useful adaptations.
Relate genetic variation to natural selection (variation provides the template for natural selection to act on).

SKILLS AND
INTERRELATIONSHIPS

Research how natural selection has played a role in the evolution of cassava plants, sea turtles, and
Caribbean
lizards.

Students should be able to:
5.1 explain how natural selection plays a role in biological evolution;

Mutation.
The peppered moth, the
Galapagos finches, bacterial resistance to antibiotics, pesticide resistance; the radiation of the Caribbean lizards. Use other local examples. For example, flower coloration: If a goat is attracted to red flowers and eats 75% of red flowers compared to the pink flowers in population, it acts as the selective force that leads to changes in the overall genetic diversity of the plant population. 5.2 distinguish between natural and artificial selection; CXC 20/G/SYLL 13

Mention plant and animal breeding. Humans select traits to suit their needs. Cite local examples.

42

Agricultural Science

SECTION C - CONTINUITY AND VARIATION (cont’d)
SPECIFIC OBJECTIVES

CONTENT/EXPLANATORY
NOTES

SUGGESTED
PRACTICAL
ACTIVITIES

SKILLS AND
INTERRELATIONSHIPS

Students should be able to:
6.1 describe how genetic engineering can be used to change the traits of an organism;

Changing the traits of one organism by inserting genetic material from a different organism. Include food production and medical treatment. For example, insulin production and incorporation of beta carotene producing gene in rice for areas that are affected by night blindness.
Refer to SO B2.11; B7.3.

6.2 discuss the possible advantages and disadvantages of genetic engineering.

Agriculture and medicine. Social, ethical and ecological implications; Fingerprinting, DNA tests, gene therapy, captive breeding programmes.

Suggested Teaching and Learning Activities
To facilitate students’ attainment of the objectives of this Section, teachers are advised to engage students in the teaching and learning activities below. These activities are designed to promote inquiry-based learning and cater to students with various learning styles.
1.

Create a comic book that gives life to the following terms: DNA, chromosome, gene, allele, haploid, diploid, dominant, recessive, co dominance, genotype, and phenotype.

2.

Take a trip to your local zoo or aquarium to identify local examples of biodiversity in the Caribbean.
Discuss why genetic variation is important.

3.

Discover the truth about and importance of Natural Selection. Navigate through the University of
California at Berkeley’s site on natural selection, natural selection at work, misconceptions about natural selection, mutations, genetic variation, adaptation and artificial selection. http://evolution.berkeley.edu/evolibrary/article/evo_25. 4.

The Caribbean is regarded as one of the world’s biodiversity “hotspots” (Myers et al. 2000).
Interpret data on Biodiversity in the Caribbean presented in pages 51-56 in the Caribbean
Environmental Outlook; http://hqweb.unep.org/geo/pdfs/Caribbean_EO_final.pdf. Make a collage showcasing the biodiversity in your country.

CXC 20/G/SYLL 13

43

SECTION C - CONTINUITY AND VARIATION (cont’d)
5.

Diversity and adaptations of organisms. Write a research paper on the evolution of domestic dogs from wolves. Video Resources: http://www.pbs.org/wnet/nature/lessons/from-wolf-to-dog/videosegments-dogs-that-changed-the-world/4800/

6.

Critical thinking problem: A few of months ago, the shed in Mr. Farmer’s backyard suddenly became infested with flies. It was sprayed with a solution of insecticide, which killed nearly all the flies.
However, sometime later, the numbers of flies increased again. The spraying process with the insecticide was repeated five (5) times, but it was clear that every time spraying was done, the insecticide became less and less effective in killing the flies. Write a short explanation for these observations. 7.

Research some of the species in the Caribbean are gone extinct (for example, Caribbean Monk Seal,
Giant tortoises (Geochelone spp), and some primates). What caused the extinction of these species?

8.

Write a one-page plea from the viewpoint of an endangered species in your country. Why is this species important and why should it be protected?

9.

Research the role of natural selection in the evolution of Cassava plants, Sea Turtles, Green
Monkeys and Caribbean Lizards in the Caribbean. Summarise the findings on one page.

CXC 20/G/SYLL 13

44

APPENDIX I

GUIDELINES FOR THE SCHOOL-BASED ASSESSMENT
RATIONALE
School-Based Assessment (SBA) is an integral part of student assessment in the course covered by this syllabus. It is intended to assist students in acquiring certain knowledge, skills and attitudes that are critical to the subject. The activities for the School-Based Assessment are linked to the “Suggested Practical
Activities” and should form part of the learning activities to enable the student to achieve the objectives of the syllabus.
During the course of study of the subject, students obtain marks for the competencies they develop and demonstrate in undertaking their SBA assignments. These marks contribute to the final marks and grades that are awarded to students for their performance in the examination.
The guidelines provided in this syllabus for selecting appropriate tasks are intended to assist teachers and students in selecting assignments that are valid for the purpose of the SBA. These guidelines are also intended to assist teachers in awarding marks according to the degree of achievement in the SBA component of the course. In order to ensure that the scores awarded by teachers are not out of line with the CXC standards, the Council undertakes the moderation of a sample of SBA assignments marked by each teacher. School-Based Assessment provides an opportunity to individualise a part of the curriculum to meet the needs of students. It facilitates feedback to the students at various stages of the experience. This helps to build the self-confidence of the students as they proceed with their studies. School-Based Assessment further facilitates the development of critical skills and that allows the students to function more effectively in their chosen vocation and in everyday life. School-Based Assessment therefore, makes a significant and unique contribution to the development of relevant skills by the students. It also provides an instrument for testing them and rewarding them for their achievements.
PROCEDURES FOR CONDUCTING SBA
SBA assessments should be made in the context of normal practical coursework exercises. It is expected that the exercises would provide authentic learning experiences. Assessments should only be made after candidates have been taught the skills and given enough opportunity to develop them. Eighteen practicals over the two-year period would be considered the minimum number for candidates to develop their skills and on which to base realistic assessments. These practicals MUST include all of the following:
1.

Ecological study.

2.

Movement at molecular level (diffusion, osmosis).

3.

Photosynthesis/respiration.

4.

Food tests.

5.

Germination.

6.

Nutrition and diseases.

7.

Genetics

CXC 20/G/SYLL 13

45

Each skill with the exception of Drawing must be assessed at least two times over the two-year period.
Candidates should be encouraged to do corrections so that misconceptions will not persist.
As
the assessments of certain skills, especially those requiring on-the-spot observation, involve looking at several behaviours or criteria, teachers are advised to select not more than two skills to be assessed in any activity.
The practical exercises selected to be used for assessment should make adequate demands on the candidates and the skills assessed should be appropriate for the exercises done. For the assessment of written work, the practical selected should be one that can be completed in the time allotted for the class and the notebooks should be collected at the end of the period.
Candidates who have not been assessed over the two-year period will be deemed absent from the whole examination. Under special circumstances, candidates who have not been assessed at all points may, at the discretion of CXC, have their marks pro-rated (adjusted proportionately).
1.

In preparation for an SBA practical, the teacher should:
(a)

(b)

list the materials including quantities and equipment that will be needed for each student;

(c)

carry out the experiment beforehand, if possible, to ascertain the suitability of materials and the kind of results (observations, readings) which will be obtained, noting especially any unusual or unexpected results;

(d)

list the steps which will be required by the candidates in performing the experiment. From this it will be clear to the teacher how the candidates should be arranged in the laboratory, whether any sharing of equipment or materials is necessary, the skills which can be assessed from the practical, and the instructions to be given;

(e)

list the skills that may be assessed (for example, observation/recording/reporting, analysis and interpretation). No more than two practical skills should be assessed from any one activity; (f)

select the skills to be assessed on this occasion. Skills other than those required for that year should also be included for teaching purposes;

(g)

2.

select tasks which must include the seven (7) topics on page 45 and should be related to a given syllabus objective. These tasks may be chosen from the “Suggested Practical
Activities” and should fit in with the normal work being done in that class;

work out the criteria for assessing each skill. This will form the basis of a mark scheme and a checklist.

The teacher should carry out the assessment and record the marks.
This is the most critical step in the assessment process. For a teacher to produce marks that are reliable, the marking must be consistent for all candidates and the marks should reflect the standard of performance at the level. The teacher must be able to justify the marks, and this occurs when there is a fixed set of conditions, factors or criteria for which the teacher looks. Marks should be submitted electronically to CXC using the SBA form provided. The forms should be dispatched through the Local Registrar by the Moderator to reach CXC by 30 April of the year of the examination. CXC 20/G/SYLL 13

46

ASSESSMENT OF PRACTICAL SKILLS
School-Based Assessment will assess skills under the profiles Experimental Skills and Use of Knowledge
(Analysis and Interpretation only).
The assessment will be conducted during Terms 1 - 5 of the two-year period following the programme indicated in the Table below.

SBA SKILLS TO BE ASSESSED FOR CXC MODERATION
PROFILE

XS

SKILLS

Manipulation/

YEAR 1
NO. OF
TIMES
SKILLS TO
BE
ASSESSED
1

10

YEAR 2
NO. OF
TIMES
SKILLS TO
BE
ASSESSED
1

10

1

MARKS

MARKS

MARKS

10

20

10

20

Measurement
Observation/

1

70

Recording/
Reporting
(30*)
Planning and
Designing

10

1

10

20

Drawing

UK

1

1

10

-

-

10

Analysis and
Interpretation

1

10

1

10

20

20

90

(10*)
40*

TOTAL

5

50

4

40

*Weighted mark
Investigative project to be done in Year 2
The investigative project would be assessed for two skills, Planning and Designing and Analysis and
Interpretation.
Students who are pursuing two or more of the single science subjects (Biology, Chemistry, and Physics) may opt to carry out ONE investigation only from any of these subjects.

CXC 20/G/SYLL 13

47

ASSESSMENT OF INVESTIGATION SKILLS
Proposal (Planning and Design)
The maximum marks available for the Proposal is

10 marks

The format for this part outlined below:
Observation/Problem/Research question stated
Hypothesis
Aim
Materials and Apparatus
Method
Controlled variable
Expected Results
Assumptions, Precautions/Sources of error/Limitations

2 marks
1 mark
1 mark
2 marks
1 mark
2 marks
1 mark

TOTAL

10 marks

Implementation (Analysis and Interpretation)
The maximum marks available for the Implementation
The format for this part is shown below:
Method
Results
Discussion
Limitation
Reflection
Conclusion

20 marks
1 mark
4 marks
5 marks
3 marks
5 marks
2 marks

TOTAL

20 marks

REPORTING FORMAT OF INVESTIGATION
PART A THE PROPOSAL (Planning and Design)
Statement of the Problem – Can be an observation, a problem
Hypothesis
Aim – Should be related to the hypothesis
Materials and Apparatus
Method – Should also include variables
Assumptions/Precautions/Possible sources of errors
Expected Results
PART B THE IMPLEMENTATION (Analysis and Interpretation)
Introduction – Background to the problem
Method - Linked to Part A (change of tense)
Results
Discussion – Explanations/Interpretations/Trends
Limitations
Reflections
Conclusion
CXC 20/G/SYLL 13

48

ASSESSMENT OF INVESTIGATIVE SKILLS
A.

PLANNING AND DESIGN

TOTAL (10)

HYPOTHESIS
- Clearly stated
- Testable
AIM
- Related to hypothesis
MATERIALS AND APPARATUS
- Appropriate materials and apparatus
METHOD
- Suitable
- At least one manipulated or responding variable
CONTROLLED VARIABLE
-Controlled variable stated
EXPECTED RESULTS
- Reasonable
- Link with method
ASSUMPTIONS/PRECAUTIONS/POSSIBLE SOURCES OF ERRORS
- Any one stated
B.

2
1
1
1
1
1
1
2
1
1
1
1
2
1
1
1
1

ANALYSIS AND INTERPRETATION
METHOD
Linked to Proposal, Change of tense

1

RESULTS
- Correct formulae and equations:
Accurate (2)
Acceptable (1)

4
2

- Accuracy of data:
Accurate (2)
Acceptable (1)

2

DISCUSSION
- Explanation
Development of points:
Thorough (2)
Partial(1)

5
2

- Interpretation
Fully supported by data (2)
Partially supported by data (1)

2

- Trends
Stated

1

CXC 20/G/SYLL 13

49

LIMITATIONS
-Sources of error identified
-Precautions stated
-Limitation stated

3
1
1
1

REFLECTIONS
- Relevance between the experiment and real life (Self, Society or
Environment)

1
1

- Impact of knowledge gain from experiment on self
- Justification for any adjustment made during experiment
- Communication of information
(Use of appropriate scientific language, grammar and clarity of expression all of the time (2); some of the time (1)

1
2

CONCLUSION
- Stated
- Related to the aim

5

2
1
1

TOTAL

(20)
(Scale down to 10 marks)

CXC 20/G/SYLL 13

50

EXEMPLAR OF INVESTIGATIVE PRACTICAL
EXEMPLAR 1
PART A-THE PROPOSAL
Observation
Ten year old John observed that after his grandfather planted some bean seedlings, he immediately applied a blue liquid to them which he had carefully measured out into the watering can. He asked his older sibling what was the blue liquid their grandfather applied to the seedlings and why did he measure it.
Hypothesis
Increasing the concentration of fertilizer applied to bean seedlings increases the number of leaves produced in the bean seedlings.
Aim: To determine if increasing the concentration of artificial fertilizer increases the number of leaves produced in the bean seedlings.
Materials: Clean washed sand, distilled water, 5 beakers, red beans, 5 plastic trays of the same dimensions, foil trays, 4 measuring cylinders, a liquid fertilizer.
Method
All apparatus will be cleaned and dried before beginning the experiment.
The four trays will be labelled as follows: no fertilizer, ¾ strength, ½ strength, ¼ strength.
Take the fertilizer and make it up to full strength following the manufacturer’s instructions. Make up to one litre. Label this full strength.
Make up dilute solutions of the fertilizer as follows.
Measure out 150 ml of the full strength into a beaker. Using a measuring cylinder measure 50 ml of distilled water and add to the beaker. Label this ¾ strength.
Measure out 100 ml of the full strength into a beaker. Using a measuring cylinder measure 100 ml of distilled water and add to the beaker. Label this ½ strength.
Measure out 50 ml of the full strength into a beaker. Using a measuring cylinder measure 150 ml of distilled water and add to the beaker. Label this ¼ strength.
Fill the trays with the washed dried sand. In each tray plant four (4) beans. Each bean should be planted no more than 1 cm below the surface and should be spaced as far away from each other as the container allows. Saturate the soils in the tray labelled no fertilizer, by adding measured amounts of distilled water until sand is moist. Add the same volume of distilled water to each of the other trays.
To tray labelled no fertilizer add 15 ml of distilled water. To tray labelled full strength measure out 15 ml
CXC 20/G/SYLL 13

51

and add to tray labelled full strength. Repeat the procedure for the remaining trays. Repeat the addition of the 15 ml of liquid to the appropriately labelled tray for the next ten days. Ensure that the solution is added the same time each day.
Place trays in a bright, well-ventilated area. Observe the trays each day. Record the day on which the beans germinated. Count the number of leaves on each seedling and record in a table. Observations such as the colour of the leaves and stem and the size of leaves can also be recorded.
Expected results
It is expected that the tray containing the full strength fertilizer would have the greatest number of leaves, followed by the ¾ strength, the ½ strength and the ¼ strength. The tray containing no fertilizer should have the least number of leaves.
PART B- THE IMPLEMENTATION
Introduction
Plants take up water and mineral salts from the soil. The mineral salts are required to ensure proper growth of plants. Nitrates, phosphates, potassium, iron, calcium and sulfate are some of the minerals required and they can be found in artificial fertilizers but must be applied in the amounts required by the plant. The number of leaves produced by seedlings in a given time, changes in length, mass and surface area can be used to demonstrate growth in plants.
In this experiment the relationship between the quantity of fertilizer added and the growth rate of the seedlings will be explored.
Method
All apparatus was cleaned and dried before beginning the experiment.
The four trays were labelled:
1.
no fertilizer;
2.
¾ strength;
3.
½ strength; and
4.
¼ strength.
The fertilizer was collected and made up to full strength following the manufacturer’s instructions. 500 ml of solution was made up. This was labelled full strength.
Dilute solutions of the fertilizer were made up as follows:
1.

150 ml of the full strength was measured out and poured into a beaker. Using a measuring cylinder;

2.

50 ml of distilled water was measured out and added to the beaker. This beaker was labelled ¾ strength; 3.

100 ml of the full strength was measured out and poured into a beaker. Using a measuring cylinder
100 ml of distilled water was measured out and added to the beaker. This beaker was labelled ½ strength; CXC 20/G/SYLL 13

52

4.

50 ml of the full strength was measured out and poured into a beaker. Using a measuring cylinder
150 ml of distilled water was measured out and added to the beaker. This beaker was labelled ¼ strength. The trays were filled with the washed dried sand. In each tray four (4) beans were planted. Each bean was planted no more than 1 cm below the surface and were be spaced as far away from each other as the container allowed.
The sand in the tray labelled no fertilizer was saturated with distilled water, by adding measured amounts of distilled water until sand was moist. The same volume of distilled water was added to each of the other trays. To tray labelled no fertilizer 15 ml of distilled water was added. To tray labelled full strength 15 ml of the full strength solution was measured out and added to tray. The procedure was repeated for the remaining trays. The addition of the 15 ml of liquid to the appropriately labelled tray was repeated for the next ten days.
The solution was added the same time each day.
Trays were placed in bright, well-ventilated area. The tray was observed each day. The day on which the beans germinated was recorded. At the end of ten days the number of leaves on each seedling was counted and recorded in a table. Observations such as the colour of the leaves and stem and the size of leaves were also be recorded.
Results
TABLE SHOWING THE EFFECT OF VARIOUS CONCENTRATIONS OF FERTILIZER ON THE GROWTH OF BEAN
SEEDLINGS
Tray

No fertilizer Full strength ¾ strength

Total number of leaves after
10 days
18
45
33

½ strength

27

¼ strength

22

Additional observations

Leaves were small and yellow. Stems were also yellow and were shortest. Leaves were large and dark green. Stems were also green and were the tallest.
Leaves were larger than those in the tray with ½ strength fertilizer but smaller than full strength. Stems were greener and taller than those in the tray with ½ strength, ¼ strength and no fertilizer
Leaves were larger than those in the tray with ¼ strength fertilizer but smaller than ¾ strength. Stems were greener and taller than those in the tray with ¼ strength and no fertilizer.
Leaves were larger than those in the tray with no fertilizer but smaller than ½ strength. Stems were greener and taller than those in the tray with no fertilizer

Discussion
Plants need the minerals to provide the elements needed to make constituents such as proteins, DNA, chlorophyll and cellulose. Magnesium is an important part of the chlorophyll molecule, required by the
CXC 20/G/SYLL 13

53

plant to photosynthesize. In the absence of magnesium and hence, chlorophyll leaves are yellow and smaller. Nitrates are required to make amino acids and proteins and DNA. If it is absent, the plant is stunted and the leaves are fewer in number and smaller.
Other minerals such as phosphates, potassium, iron, calcium and sulfate are also required for making DNA, parts of cell membranes, and enzymes for respiration and photosynthesis. In the absence of these chemicals plant growth is slowed, the numbers of leaves produced and the size of these leaves is lessened.
These chemicals are required in specific amounts and that is why when using artificial fertilizers that they be must be applied in the amounts suggested by the manufacturer. Too much fertilizer can also have a negative effect on the growth of the seedlings but this was not investigated in this experiment.
Therefore, it is clear that increasing the concentration of fertilizer applied to bean seedlings increases the number of leaves produced in the bean seedlings. The seedlings have taller, greener stems, with more leaves which are larger and greener.
Conclusion
Increasing the concentration of fertilizer applied to bean seedlings increases the number of leaves produced in the bean seedlings.
Limitations
Every effort was made to reduce experimental error as much as possible. All conditions were kept constant. However, the following may have contributed to experimental error:
1.

Whether all four beans in each tray germinated and continued to grow for the ten days of the experiment; 2.

Whether the volumes of fertilizer added each day was enough provide the appropriate amounts of minerals required for growth for the ten days and contained enough water to compensate for the water loss due to evaporation.

Reflections
From this investigation, I have a greater appreciation for the importance of minerals for plant growth. I also recognise the importance of following the manufacturer’s instructions. I can now appreciate why farmers add fertilizers to increase the yield of the produce and why fertilizers are heavily used in countries/lands where the soils are not very fertile. I also learnt why the production of fertilizer is a billion dollar industry.
This practical is based on Section B Life Processes and Disease, Nutrition, Specific Objectives 2.5 and
Growth Specific Objective 8.1
Please note that the demands of the practical can be adjusted depending on the capabilities of the class and the equipment/apparatus available at the school. Instead of counting the number of leaves students could: 1. measure the height of the four stems daily and calculate the average daily height for the four beans for each tray. A graph of average height against day number could be plotted for each tray on the same graph;

CXC 20/G/SYLL 13

54

2.

tag leaves and measure their surface area each day on square paper. The average surface area of the leaves for the four bean seedlings for each tray can be calculated and a graph plotted;

3.

histograms could be plotted instead of line graphs;

4.

germinate more beans using larger trays and calculate the dry mass daily for each tray. A graph can be plotted once again.

EXEMPLAR 2
Part A - THE PROPOSAL
Observation
Mary noticed several similarities and differences among her classmates but was particularly intrigued with the variation in earlobes. Some of her classmates had free hanging earlobes while some had attached earlobes. These observations led her to wonder about the general pattern of inheritance of this trait and how this trait is passed from parents to offspring.
A.

Free hanging earlobes

B.

Attached earlobes

http://www.windows2universe.org/earth/Life/genetics_puzzle.html
Hypothesis: Students with free hanging earlobes will have both parents with free hanging earlobes, while students with attached earlobes will have both parents with attached earlobes.
Aim: To investigate the pattern of inheritance for free hanging earlobes versus attached earlobes using data from classmates, their siblings and their parents.
Materials: paper; pencil; clip-board.
Method
1.

Separate the class into two groups: those with free hanging earlobes and those with attached earlobes. CXC 20/G/SYLL 13

55

2.

Record the presence or absence of free hanging earlobes versus attached earlobes for yourself, your siblings and your parents.

3.

Select five additional classmates at random (if you have free hanging earlobes, select two (2) classmates from the “free hanging earlobes group” and three (3) from the “attached earlobes group”. If you have attached earlobes, select two (2) classmates from the “attached earlobes group” and three (3) from the “free hanging earlobes group”). Obtain earlobe information for them as well as their siblings and both of their parents.

4.

Record the earlobe information for all six (6) students (include yourself), and their siblings and parents in a table.

5.

Analyze the phenotypic information for both groups, assuming that the genes for this characteristic are inherited according to Mendelian genetics. Answer the following questions:
(a)

Did all students with free hanging earlobes have both parents and all siblings with free hanging earlobes?

(b)

Did all students with attached earlobes have both parents and all siblings with attached earlobes? (c)

Assign genotypes to the parents and use Punnet squares and Mendelian genetics to predict the genotypes of the offspring (students and their siblings). Based on your analysis, are free hanging earlobes a dominant or recessive trait? Why or why not?

Expected Results
It is expected that students with free hanging earlobes will have both parents with free hanging earlobes and all sibling will free hanging earlobes. The same pattern is expected for those students with attached earlobes. The critical analysis of this study will involve determining the genotype of the students, children and parents based on the phenotypes observed.
PART B- IMPLEMENTATION
Introduction
Genes control the physical appearance of an organism. Genotype represents the hereditary information or exact genetic makeup of an organism for a particular trait. The phenotype is the actual observed property resulting from the expression of those genes as a physical characteristic (For example, free hanging versus attached earlobes). For diploid organisms of which humans are an example, every gene comes in two copies or alternate forms known as alleles, one, which comes from the mother, and one, which comes from the father. The combination of these two alleles is called the genotype and it is this combination that controls our physical characteristics (phenotypes). The common means to express genotypes is to use a capital letter “E” for a dominant allele and a lower case letter “e” to represent a recessive allele.
Some physical traits are considered discrete traits because they are governed by one set of genes. The expression of those traits depends on whether the genotype is homozygous dominant (EE), heterozygous
(Ee) or homozygous recessive (ee). In this experiment, the distribution and inheritance of those two discrete traits will be investigated. It will be assumed that only one pair of genes controls the traits free hanging versus attached earlobes and that this gene is inherited according to Mendelian Genetics.
CXC 20/G/SYLL 13

56

Method
1.

The class was separated into two groups: those with free hanging earlobes and those with attached earlobes. 2.

The presence or absence of free hanging earlobes versus attached earlobes was recorded for my siblings, my parents and myself.

3.

Five additional classmates were selected at random (Given that I have free hanging earlobes, two
(2) additional classmates were selected from the “free hanging earlobes” group" and three (3) from the “attached group”. If I had had attached earlobes, 2 additional classmates would have been selected from the “attached group” and three (3) from the “free hanging earlobes group”). Earlobe information for my selected classmates as well as their siblings and both of their parents was collected. 4.

The earlobe information for all six (6) students (including myself) and their siblings and parents were recorded in a table.

5.

The phenotypic information for both groups was analyzed. The following questions were explored:
(a)

Did all students with free hanging earlobes have both parents and all siblings with free hanging earlobes?

(b)

Did all students with attached earlobes have both parents and all siblings with attached earlobes? (c)

Assign genotypes to the parents and use Punnett squares and Mendelian genetics to predict the genotypes of the offspring (students and their siblings). Based on your analysis, are free hanging earlobes a dominant or recessive trait? Why or why not?

CXC 20/G/SYLL 13

57

Results
TABLE 1 -SHOWING EARLOBE INFORMATION FOR THE 6 STUDENTS, THEIR SIBLINGS AND THEIR PARENTS
#

Group 1:
Free
Hanging

Siblings

Parents

#

Group 2:
Attached
Earlobe

Siblings

Parents

1.

Michael*

Tyson- Free

Mom: Free

4.

Veronica

Ty-Attached

Mom:
Attached

MikeAttached

Dad: Free

3.

Shawon

Allison

NekishaFree

Mom:
Attached

Yohan-Free

2.

Dad: Free

KevinAttached

Mom: Free

JacobAttached

5.

Shantelle

ChrisAttached

Dad:
Attached
Mom: Free
Dad: Free

LeonnieFree
6.

Dad:
Attached

Tyson

TanishaFree

Mom: Free
Dad:
Attached

MaxineFree
Free- Free hanging earlobes
Attached- Attached earlobes
(*) Represents person conducting the experiment
Note: Not all children with attached earlobes had both parents with attached earlobes, nor did all children with free hanging earlobes have both parents with free hanging earlobes.

CXC 20/G/SYLL 13

58

TABLE 2 SHOWING COMMENTS BASED ON PHENOTYPE OF PARENTS AND CHILDREN.
#

Student

Comments

1.

Michael

Both of Michael’s parents have free hanging earlobes and both children including Michael have free hanging earlobes. This would support free hanging earlobes being a dominant trait. This would support the hypothesis and expected results.

2.

Shawon

Shawon’s mom has attached earlobes while her dad has free hanging earlobes. However, all the children have free hanging earlobes. This would suggest that free hanging earlobes are dominant to attached earlobes

3.

Allison

Allison’s mom has free hanging earlobes while her father has attached earlobes. However, two of the children have attached earlobes and two of the children have free hanging earlobes. This would indicate that free hanging is dominant but that the parent (mom) with free hanging earlobes would have to be heterozygous (Ee). That is the only way they could have children that are have both free hanging and attached.

4.

Veronica

Veronica’s parents both have attached earlobes. Veronica and her two siblings also have attached earlobes. This would support that attached earlobes is recessive and that if both parents have it (ee) then all children will be born homozygous recessive (ee) and have attached earlobes.

5.

Shantelle

Both of Shantelle’s parents have free hanging earlobes. However, only one of the three children has free hanging earlobes. Two have attached earlobes. These observations indicate that both parents have to be heterozygous dominant (Ee). This would make it possible that two parents with free hanging earlobes would still be able to have children with free hanging and attached earlobes.

6.

Tyson

Tyson’s mom has free hanging earlobes while his dad has attached earlobes. One of the children has free hanging earlobes while the other has attached earlobes. This would indicate that Tyson’s mother has to be heterozygous (Ee) and his dad has to be homozygous recessive (ee). That would be the only combination of genotypes that would result in children with attached or free hanging earlobes

PUNNET SQUARES: Based on the observations, we will assume free hanging earlobes to be a dominant trait. Homozygous dominant (AA) as well as heterozygous (Aa) will represent Free Hanging Earlobes; while homozygous recessive (aa) can only represent Attached Earlobes.

CXC 20/G/SYLL 13

59

1.

Possible Genotype of Michael’s parents and those of the children.
DAD: Free

MOM:
Free

E

E

E

EE

EE

E

EE

EE

All children would have free hanging earlobes.
2.

Possible Genotype of Shawon’s parents and those of the children.
DAD: Free

MOM:
Attached

E

E

e

Ee

Ee

e

Ee

Ee

All children would still have free hanging earlobes but their genotype would be heterozygous (Ee). Because free hanging is dominant to attached, having one copy of the “E” would be enough to have children with free hanging earlobes.
3.

Possible Genotype of Allison’s parents and those of the children.
DAD:
attached

MOM:
Free

e

e

E

Ee

Ee

e

ee

ee

Half of the children could have free hanging and half could have attached. The Mendelian ratio would be
1:1.
Possible Genotype of Veronica’s parents and those of the children.
DAD:
attached e MOM:
Attached

4.

e

e

ee

ee

e

ee

ee

CXC 20/G/SYLL 13

60

If both parents are homozygous recessive (ee)/Attached earlobes, then all children would have attached earlobes. Possible Genotype of Shantelle’s parents and those of the children.

MOM:
Free

5.

E e DAD: Free
E
e
EE Ee
Ee ee

If both parents were heterozygous, they would still show free hanging earlobes. However, their children could either display free hanging or attached earlobes. The ratio would be 3:1
6.

Possible Genotype of Tyson’s parents and those of the children.

MO
M:
Free

E e DAD:
Attached
e e Ee Ee ee ee

If the mom is heterozygous (Ee) and the dad homozygous recessive (ee), then they could have children with free hanging ear lobes or attached earlobes in a ratio of 1:1.
Discussion
Simple dominance is a case where a single dominant allele will mask the expression of a single recessive allele. As such, persons with a physical characteristic only need one parent to show that trait for it to show up in the children. In the case of simple dominance, a person with the dominant trait could either be (EE or
Ee) because only 1 of the dominant alleles is necessary to show the trait.
Information on phenotypes of parents can be used to create monohybrid crosses using Punnet squares to determine Mendelian ratios regarding possible expression of traits in offspring. The prediction is simply a matter of listing all the possible combinations of alleles in for a given offspring/child. From these results it will be possible to determine whether free hanging or attached earlobes is a dominant trait.
From the phenotypic data and Punnet square crosses it was clear that our hypothesis was not fully supported. Two parents with free hanging earlobes can still have children with attached earlobes because they could both be heterozygous dominant. A cross between Ee x Ee would result in a 3:1 phenotypic ratio of “Free-Hanging” to “Attached”. However, two parents with homozygous dominant genotype EE x EE could only produce children with free hanging earlobes. Two parents with attached earlobes (homozygous recessive alleles) ee x ee could only have children with attached earlobes. Other combinations are also possible, e.g. example, Ee x ee or EE x ee.
Conclusion
“Free Hanging” earlobe is a dominant trait. For a child to have free hanging earlobes, he only needs at least one parent to have free hanging earlobes because the “E” allele masks the “e” allele. For a person to show attached earlobes, he/she would need to get an “e” allele from each parent. Both parents will have to carry the recessive form of the gene, even though both may have ‘free hanging’ ear lobes
CXC 20/G/SYLL 13

61

Limitations
Every effort was made to reduce experimental error in this experiment. However, the experiment may be improved by:
1.

Including information on grandparents;

2.
Also, care must be taken with obtaining accurate information on the phenotype of their siblings and parents, from classmates.
Reflections
From this investigation, I have acquired a better understanding of genetics including genes, alleles, genotype versus phenotype, and Mendelian ratios. I can now appreciate how traits are passed on from one generation to another using information from a simple survey. I now realize that some traits are dominant while others are recessive and that it is our genotype that determines whether a trait will be expressed as a physical characteristic (for example, hair color, freckles, dimples, free hanging versus attached earlobes).
This investigation also has applications to the study of genetic diseases, which can also be passed on from parent to offspring. One of the most striking things I learned from this investigation is that both parents can have free hanging earlobes but their child could still be born with attached earlobes. This could apply to cases where parents appear normal but a child is born with a genetic disorder. Overall, this was an interesting practical where I got to apply critical thinking skills to answer questions about heredity.
This practical is based on Section C, Continuity and Variation, Specific Objectives 1.1 and 2.7-2.10.
Note to the teacher: For discrete traits, students don't have to be limited to the ear lobe phenotype. They can use traits including dimples, hairline and, tongue rolling. They can also use data from continuous traits such as height. Also, if the practical is overwhelming with 6 students, it can be done with 4 students.
Safety
Teachers should observe all the following safety precautions before conducting laboratory work:
1.

Investigations involving human blood and other fresh human material (for example, cheek cell, saliva) should NOT be conducted;

2.

Extreme care should be taken when handling live animals. Wild rodents should not be handled since they pass on disease by biting or through their urine. These diseases include leptospirosis;

3.

A fire extinguisher or fire blanket must be readily accessible. Teachers and students should know how to use them. The extinguisher purchased should be appropriate for a biology laboratory;

4.

A first-aid kit should be kept in the laboratory and should be checked regularly for replenishment of supplies; 5.

Corrosive solutions and inflammable solvents (for example, concentrated acids, alcohols) should be clearly labelled as such and handled with great care and should be locked away when not in use.
Candidates should know the correct way to light and use a Bunsen burner. Flints rather than matches are safer to use;

6.
7.

Electrical equipment and fittings should be regularly checked and serviced. Electrical outlets should be properly labelled (for example, 110v and 220v);

8.

A laboratory safety manual must be available.

CXC 20/G/SYLL 13

62

Audio-Visual Aids
The dynamic nature of biology requires the teacher to make use of a variety of resource materials as teaching aids. Audio-visual aids are particularly useful to reinforce and deepen understanding.
Resource materials are available for use with:
1.
2.
3.
4.

Film projectors;
Slide projectors;
Multimedia projectors;
CD-ROM and other interactive media.

Cost might prohibit departmental ownership but hardware may be kept in a common pool for use within a school or among a group of schools.
Sources of materials include:
1.
2.
3.
4.
5.

Overseas information services, for example, USIS, UNESCO, High Commissions;
Tertiary institutions;
Government ministries;
The media: - television, radio, newspapers;
The Internet.

Moderation of School-Based Assessment
The reliability (consistency) of the marks awarded by teachers on the School-Based Assessment is an important characteristic of high quality assessment. To assist in this process, the Council undertakes on-site moderation of the School-Based Assessment, conducted by visiting external Moderators.
During the Term 2 of Year 2, the Moderator will visit. Teachers must make available to the Moderator ALL
Assessment Sheets (Record of Marks and the report on the Investigation). Teachers are NOT required to submit to CXC samples of candidates’ work, unless specifically requested to do so by the Council BUT will be required to submit the candidates’ marks electronically.
The Moderator will remark the skills, and investigation reports for a sample of five candidates, who are selected using the guidelines listed below.
1.

Candidates’ total marks on the SBA are arranged in descending order (highest to lowest);

2.

The candidates scoring the:
(a)
(b)
(c)
(d)
(e)

highest Total mark; middle Total mark; lowest Total mark; mark midway between the highest and middle Total mark; mark midway between the middle and lowest Total mark;

are selected to perform some practical skills.
Teachers’ marks may be adjusted as a result of the moderation and feedback will be provided by the
Moderator to the teachers.

CXC 20/G/SYLL 13

63

The Moderator may re-mark additional candidates. Where the total number of candidates is five or fewer, the Moderator will remark ALL.
On this visit, the Moderator will also re-mark a sample of the laboratory books of Year 1 candidates, as well as provide assistance and guidance to the teachers of the Year 1 students. A copy of this report must be retained by the teacher, and be made available to the Moderator during the second term of Year 2.
The Moderator will submit the Assessment Sheets, moderation of SBA Sample and the moderation reports to the Local Registrar by April 30 of the year of the examination. A copy of the Assessment Sheets and candidates’ work must be retained by the school, until three months after publication, by CXC, of the examination results.
School-Based Assessment Record Sheets are available online via the CXC’s website www.cxc.org.
All School-Based Assessment Record of marks must be submitted online using the SBA data capture module of the Online Registration System (ORS). A sample of assignments will be requested by CXC for moderation purposes. These assignments will be re-assessed by CXC Examiners who moderate the School-Based
Assessment. Teachers’ marks may be adjusted as a result of moderation. The Examiners’ comments will be sent to schools. All samples must be delivered to the specified marking venues by the stipulated deadlines.
Copies of the students' assignment that are not submitted must be retained by the school until three months after publication by CXC of the examination results.
Criteria for the Assessment of Each Skill
This syllabus is grounded in the philosophy and methodology of all science disciplines. The teaching strategies that are recommended for its delivery are dictated by the scientist’s approach to a task. A problem to be identified will be examined in the light of available evidence and suggestions or hypotheses as to its solution formulated. These will then be tested by repeated practical observations, modified or discarded as necessary, until a hypothesis that does offer a solution is found.
The history of scientific thought shows that new ideas replace old ones that were previously accepted as factual. Students must be made to realise that no solution is final and infallible since modifications are continually made in light of new knowledge and technology.
The following are examples of how to conduct assessments of the skills listed under Experimental Skills and
Use of Knowledge (Analysis and Interpretation)
TASKS

ASSESSMENT CRITERIA

Experimental Skill:
1.

Observation/Recording/Reporting
Candidates should be able to make observations and record/report them by:
(a)

presenting diagrams of apparatus, models and specimens;

CXC 20/G/SYLL 13

Descriptions, tables or diagrams:
Method clearly described, logical sequence of activities, adequate details; tables, diagrams appropriately neat.
64

TASKS

ASSESSMENT CRITERIA

(b)

summarising data, using mean, median and range; by constructing tables, graphs, histograms, maps and pie charts;

(c)

presenting written investigations. reports

Accuracy of observations/recordings:
Significant changes recorded; extent or degree of change recorded; original and final condition compared; condition of control included (if relevant). of

Format:
Aims, apparatus, materials. All present in the correct sequence; correct content under each heading. (Candidates are to be encouraged to use all senses or extensions of them, for example, hand lens).

2.

Language and expression:
Correct tense and voice. grammatical errors.

Few

or

no

Drawing
Candidates should be able to: make large, clear, accurate representations of specimens, appropriate labeling and annotations.

Clarity: line with

Clean continuous lines of even thickness in pencil with no shading or unnecessary details; reasonable size.
Accuracy:
Faithfulness of reproduction; structures are typical of specimen; proportions are reasonable. Labeling/Labeling lines:
Neat, drawn with a ruler; labeling lines are straight and do not cross one another. There is the inclusion of magnification, view or section where appropriate; there is a title.

3.

Manipulation/Measurement
Candidates should be able to:
(a)

use basic laboratory equipment with competence and skill, handle selected measuring devices and take accurate readings;

Extent of facility in using pH paper, thermometer, metre rule, quadrat, measuring cylinder, watch or clock or other timing device, cobalt chloride paper and balances.

(b)

prepare biological materials observation or investigation;

Correct handling of equipment for collecting specimens. (c)

handle living things with care.

CXC 20/G/SYLL 13

for

65

TASKS

4.

ASSESSMENT CRITERIA

Planning/Designing
Candidates should be able to:
(a)

suggest hypotheses on the basis of observation(s); Hypotheses should include an identification of the problems on which they are based.

(b)

design methods to test their own or other hypotheses.

Inclusion of apparatus and materials to be used; Description of procedures; suggestions of controls where appropriate;
Statement of expected results and limitations.

Use of Knowledge:
5.

Analysis and Interpretation
(a)

identify and explain relationships and patterns; Include labels and annotations of structures.

(b)

draw logical conclusions and make predictions from observations and data. Inclusion of the following:

66

the limitations of the observations and data; (b)

CXC 20/G/SYLL 13

(a)

the relationship between results and original hypothesis.

Example of Possible SBA Practical for Experimental Skill:
1.

Manipulation and Measurement
STEP I -

Select an appropriate practical activity, for example:
Investigating osmosis in living tissue (Specific Objective B1.5)

STEP II -

Decide what Manipulation and Measurement tasks are appropriate for assessment, for example: TASKS

ASSESSMENT CRITERIA

Experimental Skill:
Manipulation/Measurement (cont’d)
Candidates should be able to:
(a)

cut strips of potato each
4cm x 1cm x 1cm;

All peel removed from strips.
All four strips of equal dimensions ( 1mm).
Edges of strips straight to ensure accurate measurement. (b)

immerse two strips in a dish A containing water and two strips in dish B containing salt solution;

Strips completely immersed in solutions.
All strips placed in dishes at the same time.

(c)

remove strips after 30 minutes;

Ability to cut strips neatly to given dimensions.
Accurate measurement of strips.

(d)

dry strips on tissue and measure dimensions. Handling of competently. apparatus

and

materials

STEP III - Construct a Mark Scheme based on Assessment Criteria, for example:
Each criterion satisfactorily done (2 marks)
STEP IV - Record Marks
Enter marks in teacher’s mark book.
2.

Planning and Design
STEP I - Select an appropriate practical activity, for example:
Suggesting an hypothesis and designing an investigation based on the following observation: A farmer notices that the grass is greener in the areas of a field where animals have been tied for grazing.

CXC 20/G/SYLL 13

67

STEP II - Decide what Planning and Designing skills are appropriate for assessment, for example:

TASKS

ASSESSMENT CRITERIA

Experimental Skill:
Planning and Design
Candidates should be able to:
(a)

suggest a suitable hypothesis;

Hypothesis statement observation. relates

directly

to

(b)

state the hypothesis appropriately;

Makes sense (is logical) and testable.

(c)

design a suitable investigation to test the hypothesis.

Aim of investigation relates to hypothesis.
Materials and apparatus appropriate.
Method suitable, includes reasonable control.
Attempt made to control other conditions or variables. Size of samples reasonable and procedure repeated for accuracy.
Expected results and how they will be interpreted. Limitations noted.
Format suitable for planning and design activity.

N.B.: Investigations showing no evidence of planning and design (no observations or hypothesis stated, written in the past tense, and including results and conclusions will not be accepted for SBA.
STEP III - Construct a Mark Scheme based on Assessment Criteria, for example:
Hypothesis acceptable
Aim related to hypothesis
Materials and apparatus
Method suitable
Control included
Expected result and interpretation stated
Limitations noted
Suitable format

2 marks
1 mark
1 mark
2 marks
1 mark
1 mark
1 mark
1 mark

Note different criteria carry different weights. Marks out of a total of less or more than 10 must be converted to the appropriate scale. An acceptable variation of the above mark scheme and how the marks are converted is shown on page 47.
STEP IV - Record marks and enter in teacher’s mark book.
N.B.:

Practical exercises that may be found in textbooks will not be accepted as Planning and
Designing exercises.

CXC 20/G/SYLL 13

68

Example of Possible SBA Practical for Use of Knowledge:
1.

Analysis and Interpretation
STEP I

- Select an appropriate practical activity, for example:
Investigate the effect of solutions of different concentrations on carrot tissue (SO. B1.6)

STEP II - Decide what Analysis and Interpretation skills are appropriate for assessment, for example: TASKS

ASSESSMENT CRITERIA

Use of Knowledge:
Analysis and Interpretation
Candidates should be able to:
(a)

establish that there are three strips of carrot of the same dimensions in three
(3) different concentrated solutions ;

Background information provided.

(b)

observe the length of the strips after leaving them in the solutions for the same amount of time;

The effect of the different solutions on the strips of carrot.

(c)

discuss the investigation;

Include limitations.
Expectations or interpretations.

(d)

draw logical conclusions.

results

of

the

Conclusions based on data.
Conclusions related to aim.

STEP III - Construct a Mark Scheme based on Assessment Criteria, for example:
Background information
Explanations or interpretation
Conclusion
Limitations

2 marks
3 marks
2 marks
1 mark

Total

8 marks

STEP IV - Record marks
Marks converted to two-point scale.
Students mark x 10
8
Adjusted mark recorded.
Enter marks in teacher’s mark book.
CXC 20/G/SYLL 13

69

Conversion of Marks
Name

Proposed
Hypothesis
(2)

Suitable method (2)

Reasonable control (1)

Sources of error
(1)

Expected results (1)

Logic for inference (2)

Out of 9 marks Out of 10 marks V. Allen

2

2

0

0

1

1

6

7

A. Williams

1

1

0

1

1

1

5

6

B. Cuthbert

1

2

1

0

0

0

4

4

J. Moore

2

1

1

1

1

1

7

8

S. Worte

1

1

0

0

1

0

3

3

Conversion from Teacher's Rating Scale to CXC Standard 11-point Scale
V. Allen
A. Williams
B. Cuthbert
J. Moore
S. Worte

6/9 x 10 = 6.67 = 7
5/9 x 10 = 5.56 = 6
4/9 x 10 = 4.44 = 4
7/9 x 10 = 7.78 = 8
3/9 x 10 = 3.33 = 3

CXC 20/G/SYLL 13

70

Validity and Reliability of Teachers’ Marks
The reliability of marks awarded is a significant factor in SBA and has far-reaching implications for the candidate's final grade. Teachers are asked to note the following:
1.

the criteria for assessing a skill should be clearly identified. A mark scheme must be submitted with the sample of books sent for moderation. Failure to do this could result in the candidates being unavoidably penalised;

2.

the relationship between the SBA marks in the practical workbooks and those submitted to CXC on the SBA forms must be clearly shown. It is important that the marks awarded reflect the degree of mastery of the skills assessed;

3.

workbooks should contain all practical work and those exercises used for SBA marks should be clearly identified. At least ten exercises should be undertaken;

4.

the standard of marking must be consistent, hence the need for a mark scheme;

5.

collaboration among teachers especially in the same centre is urged to minimise the discrepancy in the standard of assessment between teachers.

Record Keeping
Each candidate is required to keep a practical workbook containing all practicals done over the two-year period prior to the examination. Those assessed for CXC will be used to determine the standard of marking by the teacher. A mark scheme must be sent with each set of books. All practicals should be dated and an index made by the candidates of the practicals done. Those assessed for CXC should be clearly indicated along with the marks awarded for each skill.
Candidates' workbooks should be durable and neatness should be encouraged. The pages should be numbered and all exercises should be dated. The workbook should contain a contents page providing the following information concerning the practicals:
1.
2.
3.
4.
5.

page number; date; aim of practical; an indication by an asterisk, of which practicals were assessed for CXC; the skills assessed.

Teachers
An example of the teacher's records follows:

CXC 20/G/SYLL 13

71

Recording Marks for SBA
TEACHER'S MARK BOOK
OBSERVATION
RECORDING/
REPORTING

SKILLS

NAMES

DRAWING

PLANNING AND
DESIGN

MANIPULATION/
MEASUREMENT

ANALYSIS AND
INTERPRETATION

TOTAL
YR1

15/
10

1/
5

Avg.
(10)

15
/1

3/
3

14/
5

Avg.
(10)

11/
3

9/
5

Avg.
(10)

50

5

8

10

9

5

7

8

7

6

7

7

35

7

7

6

9

8

4

7

7

6

7

9

8

33

3

10

7

9

7

8

6

6

7

6

3

8

6

32

9

2

3

3

0

8

7

8

9

8

8

5

7

6

33

5

9

0

5

3

5

4

5

8

8

7

4

5

5

26

31/
11

14
/4

Avg.
(10)

2/
12

23
/2

Allen,
Veronica

6

8

7

2

8

Williams,
Ann

4

4

4

7

Cuthbert,
Bryan

5

5

5

Moore,
Jason

9

9

Worte,
Stewart

3

6

Avg.
(10)

Note that no special assessment exercises need to be planned. The teachers will, as is customary, be recording periodic "marks" for all students. The difference is that, since these "marks" will now contribute to an assessment external to the school, they need to be more carefully arranged to clearly stated criteria.

CXC 20/G/SYLL 13

72

CARIBBEAN EXAMINATIONS COUNCIL
SCHOOL BASED ASESSMENT IN BIOLOGY
NAME OF SCHOOL:

SCHOOL CODE:

NAME OF TEACHER:

COUNTRY:

CANDIDATES
NUMBERS

CANDIDATES NAMES

YEAR OF FINAL EXAMINATION: ________________________

YEAR I

YEAR II

GRAND
TOTAL
90

O/R/R

Dr

M/M

A/I

P/D

TOTAL
YEAR 1

O/R/R

M/M

A/I

P/D

TOTAL
YEAR 2

10

10

10

10

10

50

10

10

10

10

40

TEACHERS’S SIGNATURE:_________________________________

PRINCIPAL’S NAME____________________

DATE:________________________________________________

PRINCIPAL’S SIGNATURE_____________

CXC 20/G/SYLL 13
73

REMARKS

APPENDIX II

RECOMMENDED MINIMUM EQUIPMENT LIST (for a class of 25 students)
Several of the items listed may be produced within the school.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

1 Aquarium or glass trough
1 Balance (top pan or triple beam)
25 Beakers 400 cm3/500 cm3 (graduated)
25 Beakers 250 cm3 (graduated)
2 Bell jars with bungs
50 Bottles reagent, assorted
3 Buckets, plastic, with covers
15 Burners, Bunsen
1 set Borers, cork
Charts and models
(a) 1 Eye, human
(b) 1 Skeleton, human
(c) 1 Skin, human
(d) 1 System, female reproductive, human (e) 1 System, male reproductive, human
100 Coverslips or cover glasses
10 Crucibles with lids
10 Cylinders, measuring, assorted
1 Desiccator
5 Dishes, evaporating, porcelain
25 Dishes, Petri
10 Flasks, conical 250 ml
10 Funnels, filter (assorted)
25 pairs of Forceps
25 Holders, test tube
2 Jars, gas with cover plates
25 Jars, gas with screw-top lids
12 Knives or scalpels
25 Lenses, hand
1 Microscope, dissecting
Microscope, light. Magnification x 40 objective, x 10 eyepiece
15 Mirrors, plane

CXC 20/G/SYLL 13

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

74

Nets for collecting specimens
1 Oven, access to
5 Pooters with spare specimen tubes (not ready made)
2 Potometers (not ready made)
1 Pump, filter
Quadrats, assorted
Racks, test tube
1 Box Razor Blades, single-edged
1 Refrigerator, small
5 Rules, metre
1 Pair Scissors
1 Pair Secateurs
2 Shelves, beehive
12 Slides, cavity
1 Box Slides, microscope
10 Stands, retort with 20 clamps
15 Stands, tripod
5 Stop Clocks
Stoppers or bungs, assorted cork, rubber
2 Tapes, measuring (30 metres)
15 Thermometers, -100 to 110 C (Spirit)
10 pairs of Tongs, crucible
5 Triangles, pipe-clay
2 Troughs, pneumatic, glass
25 Tubes, boiling
Tubing, glass, assorted
Tubes, test, assorted
2 Tubes, Y-piece connector
Tubing, capillary, select lengths
Tubing, rubber, normal and heavy wall
15 Wire Gauzes, with insulated centers

APPENDIX III

RECOMMENDED MATERIAL LIST (for a class of 25 students for 2 years)
1.

2½L Alcohol or ethanol

17. Plasticine

2.

Bags, plastic

19. 50 Pipettes, teat (droppers)

3.

Balloons

18. 1kg Sodium Chloride (table salt)

4.

Bands, rubber, assorted sizes

19. 250g Sodium Hydrogen Carbonate

5.

500 cm3 Benedict's solution

20. 100g Sodium Hydroxide (pellets)

6.

500g Calcium Hydroxide

21. 2½L Spirits, methylated

7.

Cobalt Chloride paper

22. 1 roll Tubing, Dialysis or Visking

8.

250g Copper II Sulphate

23. 1 bottle Vaseline

9.

250 ml Methylene blue solution 1%

24. Slides, prepared

9.

2½L Hydrochloric acid (conc.)

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)

10. Indicator, Universal pH paper
11. 250 ml Indicator, Universal pH, solution
12. 250 ml Iodine in potassium iodide (Kl) solution 6 Leaf, T.S.
6 Root tip, L.S.
6 Dicot Stem, T.S.
6 Dicot root, T.S.
6 Human blood smear
6 Onion tips
6 Xylem, T.S.
6 Phoem, L.S.
6 Frog Blood Smear

13. Litmus paper, neutral
25. Skeleton
(a) 1 Skeleton, mammalian, complete
(b) Vertebrae
(c) Girdles
(d) Long bone
(e) Skulls
(f) Teeth

14. Masking tape
15. Paper, absorbent or cotton wool
16. Paper, filter

CXC 20/G/SYLL 13

75

APPENDIX IV

RESOURCE MATERIALS
Texts
Atwaroo-Ali, L.

CXC Biology, Oxford: Macmillan Caribbean, 2003.

Bradfield, P. and Potter, S.

Longman Biology for CSEC, 2nd edition, England: Pearson
Education Limited, 2008.

Kirby, P., Madhosingh,
Morrison, K.

L.

and

Biology for CSEC, United Kingdom: Nelson Thornes, 2008.

Journals and Periodicals
American Biology Teacher
Biologist
Cajanus
Discover
Journal of Biological Education
New Scientist

School Science Review
Science Digest
Scientific American
The Science Teacher

Websites
Barbados Action Plan UNEP http://www.un.org/documents/ga/conf167/aconf167-9.htm http://www.unep.ch/regionalseas/partners/sids.htm
Caribbean Environmental Outlook Report http://hqweb.unep.org/geo/pdfs/Caribbean_EO_final.pdf. Understanding Evolution – University of California, Berkeley http://evolution.berkeley.edu/ National Evolutionary Synthesis Center (NESCENT) http://www.nescent.org/eog/archivednews.php Biological Sciences Curriculum Study (BSCS) http://www.bscs.org/curriculumdevelopment/highschool/evolution/ CXC 20/G/SYLL 13

76

APPENDIX V

GLOSSARY
WORD/TERM

DEFINITION/MEANING

NOTES

account for

Present reason for action or event

UK

annotate

add a brief note to a label

Simple phrase or a few words only.
KC

apply

use knowledge of principles to solve problems Make inferences and conclusions; UK

assess

present reasons for the importance of particular structures, relationships or process

Compare the advantages and disadvantages or the merits and demerits of a particular structure, relationship or process; UK

calculate

arrive at the solution to a numerical problem steps should be shown; units must be included; UK

classify

divide into groups according to observable characteristics UK

comment

state opinion or view with supporting reasons UK

compare

state similarities and differences

An explanation of the significance of each similarity and difference stated may be required for comparisons which are other than structural;
UK/KC

construct

use a specific format to make and draw a graph, histogram, pie chart or other representation using data or material provided or drawn from practical investigations, build (for example, a model), draw scale diagram

Such representations should normally bear a title, appropriate headings and legend; UK, XS

deduce

make a logical connection between two or more pieces of information; use data to arrive at a conclusion

UK

define

state concisely the meaning of a word or term This should include the defining equation or formula where relevant;
KC

demonstrate

show; direct attention to...

KC

CXC 20/G/SYLL 13

77

WORD/TERM

DEFINITION/MEANING
DEFINITION/MEANING

NOTES

describe

provide detailed factual information of the appearance or arrangement of a specific structure or a sequence of a specific process

Description may be in words, drawings or diagrams or any appropriate combination. Drawings or diagrams should be annotated to show appropriate detail where necessary; KC

determine

find the value of a physical quantity

UK

design

plan and present with appropriate practical detail Where hypotheses are stated or when tests are to be conducted, possible outcomes should be clearly stated and/or the way in which data will be analyzed and presented; XS

develop

expand or elaborate an idea or argument with supporting reasons

KC/UK

diagram

simplified representation showing relationship between components.

KC/UK

differentiate

state or explain briefly those differences between or among items which can be used o to define the items or place them into r separate categories.

UK

discuss

present reasoned argument; consider points both for and against; explain the relative merits of a case

UK

draw

make a line representation from specimens or apparatus which shows an accurate relation between the parts

In the case of drawings from specimens, the magnification must always be stated; KC/XS

estimate

make an judgement

evaluate

weigh evidence and make judgements based on given criteria

The use of logical supporting reasons for a particular point of view is more important than the view held; usually both sides of an argument should be considered; UK

explain

give reasons based on recall; account for KC/UK

CXC 20/G/SYLL 13

approximate

the

quantitative

78

WORD/TERM

DEFINITION/MEANING
DEFINITION/MEANING

NOTES

find

locate a feature or obtain as from a graph UK

formulate

devise a hypothesis

XS

identify

name or point out specific components or features KC

illustrate

show clearly by using appropriate examples or diagrams, sketches

KC/UK

investigate

use simple systematic procedures to observe, record data and draw logical conclusions XS

label

add names to identify structures or parts indicated by pointers

KC

list

itemise without detail

KC

measure

take accurate quantitative readings using appropriate instruments

XS

name

give only the name of

No additional information is required;
KC

note

write down observations

XS

observe

pay attention to details which characterise a specimen, reaction or change taking place; to examine and note scientifically

Observations may involve all the senses and/or extensions of them but would normally exclude the sense of taste; XS

outline

Give basic steps only

XS

plan

prepare to conduct an investigation

XS

predict

use information provided to arrive at a likely conclusion or suggest a possible outcome

UK

record

write an accurate description of the full range of observations made during a given procedure This includes the values for any variable being investigated; where appropriate, recorded data may be depicted in graphs, histograms or tables; XS

CXC 20/G/SYLL 13

79

WORD/TERM

DEFINITION/MEANING

NOTES

relate

show connections between; explain how one set of facts or data depend on others or are determined by them

UK

sketch

make a simple freehand diagram showing relevant proportions and any important details KC

state

provide factual information in concise terms outlining explanations

KC

suggest

offer an explanation deduced from information provided or previous knowledge. (... a hypothesis; provide a generalisation which offers a likely explanation for a set of data or observations.) No correct or incorrect solution is presumed but suggestions must be acceptable within the limits of scientific knowledge; UK

test

to find out, following set procedures

XS

KEY TO ABBREVIATIONS
KC UK XS -

Knowledge and Comprehension
Use of Knowledge
Experimental Skills

Western Zone Office
13 August 2013

CXC 20/G/SYLL 13

80

CARIBBEAN EXAMINATIONS COUNCIL®
Caribbean Secondary Education Certificate
(CSEC)®

BIOLOGY

Specimen Papers:

Paper 01
Paper 02
Paper 03/2

Mark Schemes/Keys:

Paper 02
Paper 03/2

TEST CODE

01207010

FORM SPEC 2015
CARIBBEAN EXAMINATIONS

COUNCIL

SECONDARY EDUCATION CERTIFICATE®
EXAMINATION
BIOLOGY
Paper 01 – General Proficiency
1 hour 15 minutes
READ THE FOLLOWING INSTRUCTIONS CAREFULLY.
1.

This test consists of 60 items. You will have 1 hour and 15 minutes to answer them.

2.

In addition to this test booklet, you should have an answer sheet.

3.

Each item in this test has four suggested answers lettered (A), (B), (C), (D). Read each item you are about to answer and decide which choice is best.

4.

On your answer sheet, find the number which corresponds to your item and shade the space having the same letter as the answer you have chosen. Look at the sample item below.
Sample Item
Which of the following diseases is due to a dietary deficiency?

Sample Answer

(A)
(B)
(C)
(D)

A

Malaria
Diabetes
Influenza
Anaemia

B C

D

The best answer to this item is “Anaemia,” so answer space (D) has been shaded.
5.

If you want to change your answer, erase it completely before you fill in your new choice.

6.

When you are told to begin, turn the page and work as quickly and as carefully as you can. If you cannot answer an item, go on to the next one. You may return to this item later. Your score will be the total number of correct answers.

7.

Figures are not necessarily drawn to scale.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.
Copyright © 2012 Caribbean Examinations Council
All rights reserved.
01207010/SPEC 2015

-2Items 1–2 refer to the following diagrams labelled I, II, III, IV and V found in a school garden.

I

1.

III

IV

V

Which of the following characteristics could be used to classify these organisms into two groups?
(A)
(B)
(C)
(D)

2.

II

Number of wings
Segmented body
Number of legs
Antennae

The distribution of the organism labelled I could be studied using
(A)
(B)
(C)
(D)

quadrats sieves line transects nets Item 3 refers to the following food web from a tropical forest.

Snake
Bird

Ocelot

Caterpillar
Beetle

Iguana

Squirrel

Larva
Parasitic Vine

Butterfly

Tree

3.

The list of herbivores in the food web includes
(A)
(B)
(C)
(D)

iguana, parasitic vine, larva, butterfly iguana, beetle, larva, butterfly iguana, caterpillar, larva, bird iguana, squirrel, snake, bird

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

-3Item 4 refers to following relationships between some organisms.
I
II.
III
4.

Barnacles on a shark’s back
Shark/man
Man/malaria protozoan

Which of the following correctly identifies these relationships?
I
(A)
(B)
(C)
(D)

5.

III

Predator/prey
Predator/prey
Commensalism
Mutualism

Mutualism
Parasitism
Mutualism
Parasitism

Which of the following statements about a food chain is true?
(A)
(B)
(C)
(D)

6.

Commensalism
Commensalism
Predator/prey
Predator/prey

II

Energy from the sun is transferred from one organism to subsequent organisms.
Each of its members depends on heat energy obtained directly from the sun.
Energy changes from heat to light to chemical.
The sun traps light energy at the start of the food chain.

For which of the following would plants NOT compete?
(A)
(B)
(C)
(D)

Space
Light
Food
Water

Items 7–8 refer to the following diagram which represents an animal cell seen under an electron microscope.
Some cell structures are labelled (A), (B), (C) and (D).

(A)
(B)
(C)
(D)

In answering items 7–8, each option may be used once, more than once or not at all.
Which of the structures
7.

is responsible for energy production?

8.

consists mainly of water?
GO ON TO THE NEXT PAGE

01238010/SPEC 2015

-49.

Which of the following pairs of phrases does NOT distinguish between plant and animal cells?
Plant Cells
Have chloroplasts
Contain large vacuoles
Have no cell membranes
Contain cellulose cell walls

(A)
(B)
(C)
(D)

Animal Cells
Do not have chloroplasts
Have few vacuoles
Have cell membranes
Do not have cellulose cell walls

Items 10–11 refer to the following graph which shows the activity of two enzymes in the human digestive system. Enzyme activity Enzyme II

Enzyme 1

1

10.

3

4

5

6

7

8

9

10

pH

Enzyme I will function BEST in the
(A)
(B)
(C)
(D)

11.

2

mouth stomach small intestine large intestine

Which of the following is MOST likely Enzyme II?
(A)
(B)
(C)
(D)

Pepsin
Renin
Trypsin
Amylase

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

-5Items 12–13 refer to the following diagram which represents a metabolic process carried out in plants.

Light

ter
Wa

Ca rbo nd

iox ide Chlorophyll in chloroplasts

Plant cell Oxygen

Food
12.

The oxygen shown in the diagram comes from the
(A)
(B)
(C)
(D)

13.

atmosphere chlorophyll carbon dioxide water To which of the following groups does the food produced belong?
(A)
(B)
(C)
(D)

Sugars
Proteins
Starches
Fats

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

-6Items 14–15 refer to the following diagrams, X and Y, which illustrate an experiment on a metabolic process taking place in light.

Bell jar Plastic bag

X
14.

Iron
Vitamin C
Vitamin D
Calcium

Which of the following organs involved in digestion produces NO digestive enzymes?
(A)
(B)
(C)
(D)

18.

reduce the quantity of sugar produced during photosynthesis allow the plant to get its store of carbon dioxide ensure that any starch produced is removed from the leaves stop further reduction of carbon dioxide to carbohydrate

Which of the following is important in a diet to develop strong bones and teeth?
(A)
(B)
(C)
(D)

17.

the effect of potassium hydroxide on the growth of plants the effect of water on the growth of plants if carbon dioxide is necessary for photosynthesis if oxygen is necessary for photosynthesis

Before the experiment is set up, the plants are placed in a dark cupboard for about twenty-four hours. This step is necessary to
(A)
(B)
(C)
(D)

16.

Y

Potassium hydroxide The aim of the experiment is to investigate
(A)
(B)
(C)
(D)

15.

Distilled water Stomach
Pancreas
Liver
Ileum

The products of aerobic respiration are
(A)
(B)
(C)
(D)

carbon dioxide and water carbon dioxide and lactic acid carbon dioxide and alcohol carbon dioxide only

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

-719.

After vigorous exercise, the muscles involved show a marked increase in the concentration of
(A)
(B)
(C)
(D)

glucose glycogen lactic acid citric acid

Items 20–22 refer to the following diagrams of a model showing how breathing takes place.

Glass tube Rubber bung Balloon
Housing

Plunger

20.

The part of the model which represents the diaphragm is the
(A)
(B)
(C)
(D)

21.

Which of the following would MOST likely occur when the plunger is moved in the direction of the arrow shown in the diagram above?
(A)
(B)
(C)
(D)

22.

rubber bung plunger balloon housing The balloon will expand.
A vacuum will be created.
The volume of the apparatus would decrease.
The pressure within the housing will increase.

When the plunger is moved, the balloon functions like the
(A)
(B)
(C)
(D)

alveolus bronchus diaphragm trachea GO ON TO THE NEXT PAGE

01238010/SPEC 2015

-823.

The following are descriptions of blood vessels.
I.
II.
III.

Thin wall, large lumen, takes blood away from organs and tissues
Thin-walled vessel adapted for diffusion; close to cells
Thick wall, small lumen, takes blood to organs and tissues

Which of the following correctly identifies the blood vessels described above?
I

III

(A)

Artery

Vein

Capillary

(B)

Vein

Capillary

Artery

(C)

Capillary

Vein

Artery

(D)

24.

II

Artery

Capillary

Vein

The function of valves in veins is to
(A)
(B)
(C)
(D)

25.

When a person receives a vaccine, his/her immune system is stimulated to produce
(A)
(B)
(C)
(D)

26.

antigens antibiotics antibodies antitoxins On what type of day is the rate of transpiration likely to be LOWEST?
(A)
(B)
(C)
(D)

27.

lower the pressure of blood increase the pressure of blood prevent the back flow of blood push blood forward

Cool and sunny
Cloudy and windy
Hot and windy
Cloudy and cool

In the kidney, blood vessels absorb most water from the
(A)
(B)
(C)
(D)

first (proximal) convoluted tubule loop of Henlé second (distal) convoluted tubule collecting duct

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

-9Items 28–29 refer to the following section through a kidney, with parts labelled (A), (B), (C) and (D).

(A)
(B)
(C)

(D)

Match each of the items below with one of the parts labelled above. Each part may be used once, more than once or not at all.
28.

Site of urine collection

29.

Site of osmoregulation
Item 30 refers to the following diagram which represents a seedling growing in the dark.

30.

The plumule of the seedling is showing a
(A)
(B)
(C)
(D)

negative response to gravity negative response to light positive response to gravity positive response to light

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

- 10 Item 31 refers to the following diagram which shows the skeleton of a human arm.

Y

X

31.

During performance of vigorous exercise, Bone X slips out of the socket in Bone Y. Besides experiencing pain, the individual would MOST likely be UNABLE to
(A)
(B)
(C)
(D)

32.

flex the arm straighten the arm swing the arm pick up a pencil

Which part of the body do drugs affect MOST?
(A)
(B)
(C)
(D)

Stomach
Brain
Blood vessels
Lungs

Item 33 refers to the following diagram of a reflex arc, with parts labelled (A), (B), (C) and (D).
(A)

(B)
Grey
matter
White
matter

(C)
Spinal cord
(D)

33.

Which part of the reflex arc takes messages to the central nervous system?

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

- 11 34.

Which of the following sequences is the correct pathway of a reflex action?
(A)
(B)
(C)
(D)

35.

The central nervous system consists of
(A)
(B)
(C)
(D)

36.

5
11
14
28

When one side of the stem of a plant is illuminated the plant grows
(A)
(B)
(C)
(D)

40.

Arterioles, sweat glands, hair erector muscles
Epidermis, dermis, hypodermis
Sebaceous gland, hair follicle, pain receptor
Adipose tissue, sweat pores and hair

During the menstrual cycle, the egg is MOST likely to be released on Day
(A)
(B)
(C)
(D)

39.

They are addictive.
All are legally available to citizens.
They alter normal bodily functions.
They may cause liver damage and heart disease.

Which of the following structures are involved in the regulation of body temperature in humans?
(A)
(B)
(C)
(D)

38.

the brain and the spinal cord the cerebrum, cerebellum and hypothalamus sensory, motor and relay neurones sight, smell, taste, hearing, touch

Which of the following is NOT true about drugs?
(A)
(B)
(C)
(D)

37.

Receptor Stimulus Effector Response
Stimulus
Receptor Effector
Response
Stimulus
Receptor
Response
Effector
Response
Stimulus
Effector Receptor

thin and spindly away from the light towards the light and becomes etiolated

Which of the following is associated with germination?
(A)
(B)
(C)
(D)

Increased water content
Increased food store
Decreased metabolic activity
Decreased water content
GO ON TO THE NEXT PAGE

01238010/SPEC 2015

- 12 41.

Which of the following is NOT used to measure growth in plants?
(A)
(B)
(C)
(D)

42.

A seed develops from the
(A)
(B)
(C)
(D)

43.

testes epididymis urethra ureter Fertilization of the ovum takes place in the
(A)
(B)
(C)
(D)

47.

a single cell divides by meiosis only half the chromosomes are involved all the chromosomes are from one parent all cell divisions are by mitosis

After leaving the vas deferens, spermatozoa enter the
(A)
(B)
(C)
(D)

46.

Mitosis
An aquatic habitat
Optimal environmental conditions
Production of gametes

Asexual reproduction gives rise to genetically identical offspring because
(A)
(B)
(C)
(D)

45.

ovary embryo ovule pollen grain

Which of the following is a requirement for sexual reproduction?
(A)
(B)
(C)
(D)

44.

Total volume of all the organs
Total number of leaves on the plant
Changes in the fresh mass of all the organs
Changes in the dry mass of all the organs

vagina uterus oviduct ovary Which of the following is considered a male hormone?
(A)
(B)
(C)
(D)

Oestrogen
Progesterone
Testosterone
Follicle-stimulating hormone

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

- 13 48.

Which of the following means of birth control is MOST effective in preventing sexually transmitted infections? (A)
(B)
(C)
(D)

49.

Animals assist with
(A)
(B)
(C)
(D)

50.

Foot size
Height
Intelligence
Presence or absence of horns

Genetic variation is important because it
(A)
(B)
(C)
(D)

53.

genotype monotype phenotype prototype Which of the following is an example of a discontinuous trait?
(A)
(B)
(C)
(D)

52.

pollination and seed dispersal pollination only seed dispersal only asexual reproduction in plants

The observable physical/biochemical characteristics or traits of an organism are referred to as its
(A)
(B)
(C)
(D)

51.

A condom
The pill
A diaphragm
A spermicide

provides a basis for natural selection allows for survival against disease provides antibiotic resistance forms the basis for vaccines

Which of the following isolation mechanisms could lead to speciation (splitting into two different species)?
I.
II.
III.

Geographical
Behavioral
Ecological

(A)
(B)
(C)
(D)

I only
II only
II and III only
I, II and III

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

- 14 54.

Which of the following terms BEST describes two or more forms of the same gene?
(A)
(B)
(C)
(D)

55.

Which of the following processes does NOT form part of meiosis?
(A)
(B)
(C)
(D)

56.

Alleles
Diploid
Chromatids
Chromosomes

Recombination
Segregation
Independent assortment
Dependent assortment

Which of the following describes the sex chromosomes in humans?
Females
(A)

XX

XXX

(B)

XO

XY

(C)

XX

XY

(D)

57.

Males

XX

Y

Which of the following BEST describes the process of evolution?
(A)
(B)
(C)
(D)

58.

Biological evolution is BEST defined as the
(A)
(B)
(C)
(D)

59.

Development of characteristics in response to need
Change of populations through time
Development of populations due to natural selection
Change from simple to complex organisms

changes in species towards greater complexity over time changes in gene frequencies in a population over time ability of individuals to survive and produce offspring ability of individuals to respond to natural selection

Which of the following provide supporting evidence for biological evolution?
I.
II.
III.
(A)
(B)
(C)
(D)

Fossil record
DNA/genetic material
Vestigial traits (appendix, wisdom teeth)
I and II only
I and III only
II and III only
I, II and III

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

- 15 60.

Which of the following is the first step in the production of insulin using recombinant DNA?
(A)
(B)
(C)
(D)

Plasmid removed from E. coli.
DNA coding for human insulin inserted in the plasmid.
Plasmid closed by a special enzyme.
Plasmid opened by a special enzyme.

END OF TEST
IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

TEST CODE 01207020

FORM SPEC 01207020/2015
CARIBBEAN EXAMINATIONS COUNCIL
CARIBBEAN SECONDARY EDUCATION CERTIFICATE®
EXAMINATION
BIOLOGY
Paper 02 – General Proficiency
2 hours

SPECIMEN PAPER
READ THE FOLLOWING INSTRUCTIONS CAREFULLY.
1. This paper consists of SIX questions in two sections. Answer ALL questions.
2. For Section A, Write your answers in the spaces provided in the booklet.
3. For Section B, write your answers in the spaces provided at the end of each question, in this booklet.

4. Where appropriate, answers should be illustrated by diagrams.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.
Copyright © 2012 Caribbean Examinations Council
All rights reserved

1207020/SPEC 2015

-2SECTION A
Answer ALL questions. Write your answers in the spaces provided in this booklet.
1.

A Biology class goes on a field trip to study a small coastal ecosystem along a busy highway. A student’s sketch of the area investigated is shown in Figure 1.

Figure 1. Map of the area studied
(a) One group of students is given a 1 m2 quadrat to study the area shown in Figure 1.
(i)

The distribution of the different plant and animal species changes from the water’s edge to the highway. Name TWO additional pieces of apparatus the students will need to investigate the changing distribution of plant and animal species.
___________________________________________________________________
___________________________________________________________________
(2 marks)

(ii)

Describe how EACH piece of apparatus you named in (a) (i) can be used to study the distribution of plant species in this area.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(2 marks)

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-3(b) One group of students is given a 1 m2 quadrat to determine the distribution of three plant species in the area behind the mangroves. The results are shown in Table 1.
TABLE 1: RESULTS FROM QUADRAT THROWS

Plant Organisms

Quadrat Number
2

3

4

5

6

7

8

9

10

Small flowering shrub

5

2

3

2

2

1

2

1

3

1

Grass growing in clumps

4

2

3

2

0

1

2

4

0

0

Succulent plant
(i)

1

10

10 12 15 20 25 15 22

5

18

State ONE precaution that should be taken when using the quadrat to determine the distribution of the plant species.
___________________________________________________________________
(1 mark)

(ii)

Calculate the species density of the small flowering shrub in the area. (Show your working.) (2 marks)

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-4(c) Another group of students observes the feeding relationship among the organisms found in and around the pond. The data recorded is shown in Table 2.
TABLE 2: FEEDING RELATIONSHIPS OF ORGANISMS IN THE POND
Organism
Crab

Decaying plant matter

Guppy (fish)

Mosquito larvae, tadpoles

Water bird

Guppy, frog, crab

Water snail

Algae, water weed

Mosquito larvae

Moss, decaying plant matter

Water weed

Makes own food

Frog

Dragonfly, mosquito larvae

Tadpoles
(i)

Food Eaten

Water weed

Using the information in Table 2, construct a food web with TEN organisms.

(3 marks)

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-5(ii)

Explain why there are usually no more than four trophic levels in a food web.
___________________________________________________________________
___________________________________________________________________
(2 marks)

(iii)

State TWO physical (abiotic) factors that could affect the population of the organisms that live in the pond.
___________________________________________________________________
(2 marks)

(d) Different groups of students collected data on the frog population from 1997 to 2004.
Table 3 shows this data.
TABLE 3:

FROG POPULATION OBSERVED
FROM OCTOBER 1997 TO OCTOBER 2004

2004

Population Size of Frogs (number of individuals) 5

2003

5

2002

35

2001

80

2000

110

1999

No data (No field trip due to hurricane)

1998

75

1997

125

Year

(i)

Plot a graph to represent the data shown in Table 3, on the grid provided on Page 6.
(4 marks)

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-6-

Grid for Question 1. (d) (i)

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-7(ii)

Account for the trend in the frog population before and after the hurricane.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(3 marks)

(iii)

Suggest ONE reason why it is useful to study the distribution of frogs.
___________________________________________________________________
___________________________________________________________________
(2 marks)

(iv)

Explain why frogs from this location were found to be unable to mate with frogs from another coastal location 10 km away.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(2 marks)
Total 25 Marks

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-82.

(a)

Figure 2 shows the structure of the human eye.
Label the parts numbered 1 to 6 on the diagram in Figure 2.
(6 marks)

Figure 2. A section through the human eye
(b)

The rods and cones are specialised cells of the retina which are stimulated by light. What biological term describes such cells?
__________________________________________________________________
(1 mark)

(c)

Severe lack of Vitamin A can result in the cornea of the eye becoming dry and thickened. Explain how this condition would affect a person’s ability to see.
__________________________________________________________________
__________________________________________________________________
(2 marks)

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-9(d)

(i)

Diagrams C and D in Figure 3 show two common eye defects, while
Diagrams 7, 8 and 9 show three types of lenses that can be used to correct eye defects.

Figure 3. Common eye defects and corrective lenses
Identify the eye defects and the lenses in Figure 3 that can be used to correct the defects.
Diagram C

Eye defect:
________________________________________________
Corrective lens:
________________________________________________

Diagram D

Eye defect:
________________________________________________
Corrective lens:
________________________________________________
(4 marks)

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-10(ii)

Sometimes contact lenses are used to correct eye defects. Suggest TWO precautions one should take when using contact lenses.
____________________________________________________________
____________________________________________________________
(2 marks)
Total 15 marks

3.

(a)

Figure 4 shows two flowers, each from two different plant species.

Figure 4. Sections of flowers from different species
(i)

Identify the parts of the flowers, labelled H to M.
H
I
J
K
L
M
(3 marks)

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-11(ii)

a)

What is the likely pollinating agent of Flower R?

___________________________________________________________________
(1 mark)
b)

Based on the information in Figure 4, give TWO reasons for your answer.

___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(2 marks)
(iii)

Describe ONE characteristic of the mature fruit of Species Q that can be deduced from the diagram, and say why it is important for the survival of the species.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(2 marks)

(iv)

The seeds from the mature fruit of Flower Q are not dispersed by animals or water but are found far away from the parent plant. Explain how this is possible.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(2 marks)

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-12(v)

Suggest ONE reason why some plants have no dispersing seeds.
___________________________________________________________________
___________________________________________________________________
(1 mark)

(b)

Describe the events which result in the development of a seed, after pollination.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(4 marks)
Total 15 marks

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-13-

SECTION B
Answer ALL questions.
Write your answers in the spaces provided at the end of each question in this booklet.
4.

(a)

(i)

Describe the mechanisms by which air is moved into the lungs during inhalation in humans.

(ii)

Why is gaseous exchange important in the human body?
(6 marks)

(b)

Compare the characteristics of the structures involved in gaseous exchange in humans and in flowering plants. You must state the name of EACH of the structures. (5 marks)

(c)

Explain TWO ways in which smoking tobacco may reduce the efficiency of gaseous exchange in the lungs.
(4 marks)
Total 15 marks

Write your answer to Question 4 here.
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-14Write your answer to Question 4 here.
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-15Write your answer to Question 4 here.
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-165.

(a)

Describe the role of the mosquito in the transmission of a named pathogen of a named disease. Suggest TWO social implications of an outbreak of this disease.
(8 marks)

(b)

Explain THREE reasons why it is important to study the life cycle of the mosquito in order to control the spread of the disease named in (a) above.
(5 marks)

(c)

Explain why some individuals do not show signs or symptoms when bitten by an infected mosquito.
(2 marks)
Total 15 marks

Write your answer to Question 5 here.
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-17Write your answer to Question 5 here.
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-18Write your answer to Question 5 here.
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-196.

(a)

State what is meant by ‘natural selection’ and explain why genetic variation is important in natural selection.
(4 marks)

(b)

Humans have developed breeds of dogs with different traits. Explain TWO ways in which this breeding process differs from natural selection, giving TWO possible disadvantages to the species.
(4 marks)

(c)

Genetic engineering techniques are being applied in areas such as medicine, biotechnology and research. Discuss TWO possible negative outcomes of genetic engineering, and THREE benefits of continuing the use of genetic engineering techniques. In your answer, state what is meant by genetic engineering.
(7 marks)
Total 15 marks

Write your answer to Question 6 here.
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-20Write your answer to Question 6 here.
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________

GO ON TO THE NEXT PAGE
01207020/SPEC 2015

-21Write your answer to Question 6 here.
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
END OF TEST

1207020/SPEC 2015

TEST CODE 01207032

FORM SPEC 01207032/2015
CARIBBEAN EXAMINATIONS COUNCIL
CARIBBEAN SECONDARY EDUCATION CERTIFICATE
EXAMINATION

®

BIOLOGY
General Proficiency
Paper 032 – Alternative to SBA
2 hours 10 minutes
SPECIMEN PAPER

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.
1.

Answer all questions.

2.

You are advised to take some time to read through the paper and plan your answers. 3.

Use this answer booklet when responding to the questions. For EACH question, write your answer in the space provided and return the answer booklet at the end of the examination.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.
Copyright © 2012 Caribbean Examinations Council
All rights reserved

SPEC 01207032/2015

-2Answer ALL questions.
Write your answers in the spaces provided in this booklet.
1. (a) (i) You are provided with the following materials and apparatus:
3 petri dishes
A spatula
Water
Salt
A piece of cucumber in a covered container
Small knife/scalpel
PROCEDURE
A.
B.

Label the petri dishes as X, Y and Z.
Make a concentrated solution of salt and water, and divide it into two equal parts.
Pour one half into Dish X to a height of at least 1cm.
Dilute the remaining half with tap water to make a solution of half the concentration of that in Dish X. Pour this solution into Dish Y. Use the same volume as you used in Dish X.
Into Dish Z pour the same volume of tap water as used in Dishes X and Y.

C.

Cut the piece of cucumber in half as shown in the diagram below.

D. Put one half of the piece of cucumber into the covered container for use in answering
Part (b).
E. Peel off the skin from the other half of the cucumber and cut THREE slices 0.5 cm thick and record your answer in Table 1 on page 3. Insert the correct headings in
Table 1.
F. Place ONE slice of the cucumber in EACH dish and leave undisturbed for at least 30 minutes. You may begin working on Part (b) while waiting for results from Part (a).
G. Remove the slices and dry them by patting gently between two sheets of paper.
Record in Table 1 any changes in the size, appearance or texture of the slices in
EACH solution.

-3TABLE 1: RESULTS OF EXPERIMENT

(9 marks)
(ii)

Describe how you made up the solution that was put in Dish Y, to the required concentration. _______________________________________________________________
_______________________________________________________________
_______________________________________________________________
(2 marks)

(iii)

State the control and the manipulated variable in the experiment.
Control variable:
_______________________________________________________________
Manipulated variable:
_______________________________________________________________
(2 marks)

-4(iv)

Explain fully the differences noted between the slices in Dish X and Dish Z after
30 minutes.
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
(2 marks)

(v)

State ONE conclusion that could be drawn about the effect of the concentration of a solution on plant tissues.
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
(2 marks)

(vi)

Suggest THREE ways in which the experiment could be improved to provide more accurate data to support the conclusion drawn in (v) above.
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
(3 marks)

-5(b)

Remove the second piece of cucumber from the closed container.
Make a large labelled drawing to show the CUT END ONLY of the cucumber.

Diameter of cut end: ______________________________________________
Magnification: ___________________________________________________
(8 marks)
Total 28 marks

-62. A Biology class carried out an investigation of the amount of water lost from two plants species over a 10-hour period. The two potted plants were kept in the laboratory under very dim light and were weighed at hourly intervals after the initial masses were obtained. The change in mass of each plant was recorded and used to calculate the percentage water-loss, shown in Table 2.
TABLE 2: PERCENTAGE WATER-LOSS PER UNIT AREA IN
TWO PLANT SPECIES OVER A 10-HOUR PERIOD
Time(hour)
0
1
2
3
4
5
6
7
8
9
10

Percentage Water-loss
Species P
0.0
5.0
8.5
11.0
12.0
13.5
13.5
14.0
14.5
14.5
15.0

Species Q
0.0
9.0
11.0
12.5
14.0
15.0
16.5
17.0
18.5
20.0
22.0

(a) Represent the data collected on the two plant species on the following grid.

(8 marks)

-7(b)

Suggest TWO sources of error in the investigation.
_______________________________________________________________
_______________________________________________________________
(2 marks)

(c)

Explain the differences observed in the percentage of water lost from the two plant species over the 10-hour period.
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
_______________________________________________________________
(2 marks)

(d)

The apparatus shown in Figure 1 were used to collect the data for the investigation of water-loss in the two plant species.
In the box provided on page 8, illustrate how the apparatus shown in Figure 1 were arranged to collect the data in Table 2.

String

Clear plastic wrap

Figure 1. Apparatus and materials used to determine water-loss in two plant species

-8-

(3 marks)
(e)

Suggest TWO adaptions that a plant may have to conserve water.
______________________________________________________________
_______________________________________________________________
______________________________________________________________
(2 marks)
Total 17 marks

-93. (a) (i)

In the space below, draw a surface view of the apparatus and materials in Figure
2, to show how an investigation into the response of invertebrates to differences in light intensity could be set up.

Black paper

Woodlice

Petri dish with cover

Figure 2. Apparatus and materials for the investigation

(2 marks)
(ii)

State TWO precautions that should be taken when handling live animals to ensure their safety.
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
(2 marks)

-10(iii)

State TWO limitations of this investigation.
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
(2 marks)

(iv)

Describe the actual observations a scientist may make which would lead him/her to set up this experiment.
______________________________________________________________
______________________________________________________________
(2 marks)

(v)

State a hypothesis that a scientist could have used as a basis for this investigation.
______________________________________________________________
______________________________________________________________
(2 marks)

-11(b)

All the woodlice were placed in the centre of each of four chambers at the start of the investigation. Table 2 shows the distribution of the woodlice in the chambers at different times.
TABLE 2: DISTRIBUTION OF WOODLICE IN THE
CHAMBERS AT DIFFERENT TIME INTERVALS
Conditions in Each Chamber

Time(min)

5
10
20
40
(i)

A

B

C

D

Wet and Light
4
3
1
0

Wet and Dark
14
24
28
29

Dry and Light
2
1
1
1

Dry and Dark
10
2
0
0

To which TWO conditions were the woodlice responding positively in the first five minutes?
______________________________________________________________
______________________________________________________________
(2 marks)

(ii)

Which TWO conditions did the woodlice seem to avoid?
______________________________________________________________
______________________________________________________________
(2 marks)

(iii)

Given the results after 40 minutes, suggest ONE natural habitat in which woodlice are likely to be found.
______________________________________________________________
(1 mark)
Total 15 marks

END OF TEST

- 16 -

CSEC BIOLOGY
Specimen - Paper 01
2015
QUESTION
NUMBER
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

KEY
A
D
B
B
A
C
D
B
C
B
C
D
A
C
C
D
C
A
C
B
A
A
B
C
C
D
B
C
B
A

SYLLABUS
OBJECTIVE
A1.1
A2.1
A3.3
A3.7
A4.1
A7.1
B1.3
B1.3
B1.4
B2.8
B2.9
B2.2
B2.2
B2.4
B2.4
B2.11
B2.7
B3.1
B3.2
B3.3
B3.3
B3.3
B4.3
B4.3
B4.6
B4.9
B5.4
B5.4
B5.4
B6.1

QUESTION
NUMBER
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

KEY
C
B
B
B
A
B
A
C
C
A
A
C
D
D
C
C
C
A
A
C
D
A
D
A
D
C
B
B
D
A

SYLLABUS
OBJECTIVE
B6.4
B7.8
B7.6
B7.6
B7.5
B7.8
B7.11
B9.3
B7.2
B8.3
B8.1
B8.2
C9.1
C9.1
B9.2
B9.2
B9.2, 9.3
B9.5
B9.9
C4.7
C2.2
C2.1
C1.2
C3.1
C4.4
C4.10
C5.1
C5.4
C6.1
C7.1

GO ON TO THE NEXT PAGE
01238010/SPEC 2015

01207020/MS/SPEC/2015

C A R I B B E A N
CARIBBEAN

E X A M I N A T I O N S
SECONDARY EDUCATION
EXAMINATION

CERTIFICATE®

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
MARK SCHEME
SPECIMEN PAPER 2015

C O U N C I L

2

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 1.
(a) (i)

KC UK XS

Rope/String
Tape measure
Bottles
Traps
Any other reasonable suggestion

2

Any 2 = 2 marks
(ii) Rope/String
Use a line transect
Secure the rope at one end of the habitat (1)
Extend in a straight line to the other end (1)

2

Any 1 = 1 mark
Use the tape/measure to mark the transect (1)
Record the species of plants touching the line at regular intervals (1)
Any 1 = 1 mark
Bottles/traps – laid along transect lines/pitfalls for catching mobile organisms
(small/large)
Any 1 = 1 mark
Max mark = 2

(b) (i)

Throw the quadrat randomly
Repeat throws

1

Any 1 = 1 mark
(ii) Sum all the quadrat results = 22 (1)
Divide by 10
Species density = 2.2 shrubs/m2 (1)
(c) (i)

2

Food web
Producer (1)
Arrows pointing in the right direction
Organisms used in logical sequence
Interconnected food chains shown
Any 2 = 2 marks

3

3

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 1. (continued)

KC UK XS

(c) (ii) Less energy
Energy lost
Respiration
each level
Competition

2

available at higher trophic levels at each successive trophic level activity, excretory losses at for food

Any 1 explained = 2 marks
(ii) Temperature
Turgidity
Rainfall

2

Any other reasonable suggestion
Any 2 = 2 marks
(d) (i)

Line graph: (see graph on Page 5)
Title (1)
Axis labeled appropriately (1)
Accurate plot (2)
– scale
– all points accurate

(ii) Decline before hurricane (1)
Limited availability of food
Killed by vehicles/humans
Use of insecticides
Any 1 = 1 mark
Increase after the hurricane (1)
Pond expands due to rainfall
More tadpoles/increased fertility
Any 1 = 1 mark
Decline after the hurricane (1)
Competition
Limited availability of food
Killed by vehicles
Use of insecticides
Destruction of habitat by man
Accept any other reasonable explanation
Any 1 = 1 mark

4

3

4

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 1. (continued)

KC UK XS

(d) (iii) Good indicator species
Population changes in frogs indicate changes in the environment

2

Frog




population will change with the: amount of food available the number of predators in the ecosystem the suitability of the habitat for the survival of the organisms
– their numbers give an indication of how well the ecosystem is doing

Any other reasonable suggestion
Any 1 explained = 2 marks
(iv)





Geographic isolation – organisms from one population spreading into the other
No gene flow between them /separate gene pools Separate mutations and selections taking place so both populations become genetically different

2

Any reasonable suggestion
Any 1 explained = 2 marks

Specific Objectives: A. 1.3, 2.1, 3.5, 2.3,
7.1; B. 4.10; C. 1.2
4

12 9

5

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 1. (continued)
Graph for Question 1. (d) (i)

6

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 2.
(a) 1
2
3
4
5
6

KC

Suspensory ligament
Lens
Iris
Ciliary muscle
Fovea (Yellow spot)
Optic nerve

UK

6

1 mark each
Receptors/sense cells (1)

(b)
(c)

1
2

Passage of light through cornea blocked
Cornea needs to be transparent
Could cause blindness /impaired vision
Any 2 = 2 marks

(d) (i)

C
D

long sightedness/far short sightedness/near

7 – C
8 – D
(ii)





4
Remove lenses from eyeball from time to time
Wash in antiseptic lotion
Wash hands before applying

2

Any other reasonable suggestion
Any 2 = 2 marks

Specific Objectives: B. 7.9, 2.11, 7.10
7

8

7

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 3.
(a) (i)

KC
H
I
J
K
L
M








Petals
Anther
Stigma
Ovary
Filament
Sepal

UK

3

6 correct = 3 marks
4-5 correct = 2 marks
2-3 correct = 1 mark
(ii)

a)

Wind (1)

1

b) – Feathery stigma
– Reduced/no corolla
– Long filaments

2

Any other reasonable suggestions
Any 2 = 2 marks
(iii) Many ovules visible so several seeds will be present in the fruit, increasing chances of survival of offspring (2)
(iv)

Self-dispersal/mechanical or explosive mechanism releases seeds far away from origin (2)

2

(v)
(b)

2

Reproduce asexually (1)

1











Pollen germinates on stigma
Pollen grain nucleus divides into 2 male nuclei Pollen tube forms
Pollen tube grows down the style
Pollen tube carries 2 male nuclei
Pollen tube enters micropyle
Nuclei fuse with ovum/fertilization
Embryo develops
Seed store/cotyledon

4

Any 4 = 4 marks

Specific Objectives: B.9.7 – 9.11

7

8

8

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 4.
(a) (i)

KC
Inhalation
– Rib cage raised up and out
– Intercostal muscles contract
– Diaphragm contracts/flattens
– Volume inside lungs increases, pressure inside lungs decreases
– Air pulled in

UK

4

Any 4 = 4 marks
(ii)




Allows oxygen from air to get into blood; oxygen is required for aerobic respiration
Removes carbon dioxide from blood

2

Any 2 = 2 marks
(b)

Humans – alveoli
Flowering plants – leaves

2

1 mark each
Similarities:
– Thin
– Large surface area
– Moist
– Transport system
Differences:
– Gases travel across membrane in humans while in plants gases diffuse along a concentration gradient in air spaces.
– In humans, blood take gases to and from the the surface while in plants gases move by diffusion away from the surface.

3

Any 3 = 3 marks (must include both similarity and difference) (c)

Cigarette smoke:
– Breaks down walls of alveoli
– Reduces surface area for gas exchange
– Reduces moisture lining alveoli wall
– Makes breathing difficult
– Reduces oxygen available for diffusion
Any other reasonable suggestion

4

Any 4 = 4 marks
Specific Objectives: B.3.3, 3.4, 3.5
6

9

9

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 5.
(a) (i)

KC
Name of pathogen – Plasmodium, dengue virus, yellow fever virus, West Nile virus (1)

UK

2

Name of disease – malaria, dengue, Yellow fever
West Nile fever (1)
Role




in transmission
Bites infected person
Hosts pathogen
Mosquito not affected by pathogen

4

Any 4 = 4 marks
Social Implications
– Loss of productivity
– Isolation of infected persons
– Increased demand on human services
Any other reasonable suggestion

2

Any 2 = 2 marks
(b)

Adult
Breeding in stagnant water – removing stagnant water prevents breeding site
Feeding pattern – feeds at dusk so take measures to prevent contact, for example, spraying insecticide or using repellent
1 explained = 2 marks
Eggs
Eggs produced in stagnant water – prevent formation or drain stagnant pools of water (1)
Larva/Pupa
Live in stagnant water - chemicals can be used to destroy them
Small fish feeds on this stage
Oil on surface of water prevents air getting to pupa Any 1 explained = 2 marks

5

10

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 5. (continued)
(c)

KC




Passive/Active immunity
Antibodies present from vaccine/previous infection Any other reasonable suggestion

UK
2

1 mark each

Specific Objectives: B.4.6, 8.4, 10.2, 10.3, 10.5
6

9

11

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 6.
(a) Natural selection
– Process by which allele frequency changes
– Species better adapted to the environment
– Environmental selection pressure

KC

UK

4

Any 2 = 2 marks
Genetic variation allows for differences among populations Adaptive traits passed on to the next generation
Any other reasonable suggestion
Any 2 = 2 marks
(b)





Dog breeding is a form of artificial selection
Man selects traits considered favourable
Faster than natural selection

2

Any other reasonable suggestion
Any 2 = 2 marks
Disadvantages
Traits selected by man may not allow species to adapt well/survive if environment becomes unfavourable
Loss of genetic variation/density
Any other reasonable suggestion
Any 2 = 2 marks

2

12

01207020/MS/SPEC/2015

BIOLOGY
PAPER 02 – GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
Question 6.(continued)
(c) Genetic engineering involves changing the phenotype/traits of organisms by inserting genes from another organism into the genes of an organism (2)

KC

UK

2

Negative Outcome
– Engineered organism may displace the normal population – Adverse environmental impact
– Antibiotic resistance
– Human population may not accept genetically engineered product

2

Any 2 = 2 marks
Benefits
– Research is important
– Mass produced medications to treat diseases
– Faster than artificial selection
– Increased crop resistance to disease
– Improved food quality

3

Any other reasonable suggestion
Any 3 = 3 marks

Specific Objectives: C.5.1, 5.3, 7.1, 7.2
6

9

01207032/MS/SPEC/2015
C A R I B B E A N

E X A M I N A T I O N S

C O U N C I L

CARIBBEAN SECONDARY EDUCATION CERTIFICATE®
EXAMINATION

BIOLOGY
PAPER 032 - GENERAL PROFICIENCY
MARK SCHEME
SPECIMEN PAPER 2015

-2-

01207032/MS/SPEC/2015

BIOLOGY

PAPER 03/2 - GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
UK

Question 1
(a)(i)

Table
Table headings

(3)

Observations
(ii)

(6)

9

Equal amounts of tap water and the solution were mixed (1)
Description of how water was measured

(iii)

Control:plain tap water

2

(1)

(1)

Manipulated variable: salt concentration
(iv)

XS

(1)

2

Dish X
- Concentration of solution outside than that of cucumber cell sap

greater

- Water moves out of cucumber by osmosis
- Cell lose turgidity
Dish Z
- Concentration of cell sap greater than water
- Water moves into the cucumber by osmosis
- Cells become turgid
2

Any 2 = 2
(v)

Degree of turgidity of plant tissue is related to concentration of solution in which it is placed.
(2)

(vi)

2

- Accurate measurement of concentration
- Wider range of concentrations
- Use several slices
- Leave for change a

longer

time,

until

no

further

- Different types of plant tissue must be used
3

Any 3 = 3
(b)(ii) Drawing
Title

(1)

Mag.

(1)

Label

(3)

Drawing

(3)
TOTAL

8

4

24

-3BIOLOGY

01207032/MS/SPEC/2015

PAPER 03/2 - GENERAL PROFICIENCY
SPECIMEN
MARK SCHEME
UK

XS

% Water-loss

Question 2

Graph
Title
(1)
Axes
(2)
Key
(1)
Scale
(1)
All plots accurate (3)
10-15 plots accurate = 2
5-9 plots accurate = 1…...

Similar Documents

Premium Essay

Religious

...Religious Social Institution SOC 101 26 November 2012 Religious social institutions consist of groups of individuals who share common views about the nature of God and the creation of the universe, which incorporates their beliefs, writings, behaviors, and rituals. They are led by their own faith or personal belief rather than science. Social, economic, political, and spiritual beliefs are all influenced if not dominated by religion. Christianity, Islamic, Judaism, Hinduism, and Roman Catholic’s all bring people together for some form of social interactions with one another, whether it be in a worship service, belief or ritual, or any other religious act that may require interaction. This paper will discuss the impact that the three sociological theories, the functionalism, conflict, and interactionism theories have on the religious institution along with the similarities and differences of these theories in respect to society’s view of religion. People have very different ways of viewing religion, which creates conflict throughout the world. The differences in beliefs and ideologies vary from person to person within any given society. The functionalists believe that religion “is essential for all societies because it helps unite people in a shared belief and behavior system, resulting in social cohesion.” (Vissing, 2011, sec. 4.6) Religion gives people answers, explains the unexplainable, and a purpose for life. Religious......

Words: 2373 - Pages: 10

Premium Essay

Religious Education

...branches of geography are found within human geography, a major branch of geography that studies people and their interaction with the earth and with their organization of space on the earth's surface. Economic Geography Economic geographers examine the distribution of production and distribution of goods, the distribution of wealth, and the spatial structure of economic conditions. Population Geography Population geography is often equated with demography but population geography is more than just patters of birth, death, and marriage. Population geographers are concerned with the distribution, migration, and growth of population in geographic areas. Geography of Religions This branch of geography studies the geographic distribution of religious groups, their cultures, and built environments. Medical Geography Medical geographers study the geographic distribution of disease (including epidemics and pandemics), illness, death and health care. Recreation, Tourism, and Sport Geography The study of leisure-time activities and their impact on local environments. As tourism is one of the world's largest industries, it involves a great number of people making very temporary migrations and is thus of great interest to geographers. Military Geography Practitioners of military geography are most often found within the military but the branch looks not only at the geographic distribution of military facilities and troops but also utilizes geographic tools to develop......

Words: 707 - Pages: 3

Premium Essay

Religious Education Sba

...rather than a religion as a result of this the researcher did a research in order to find out “The importance of the Rastafarian symbols to the Rasta’s and why does the Rasta’s of the community of Princess Field, St. Catherine. Topic: Rastafarian Aims of Research: Symbols Statement of Aims: 1. What are the different symbols in Rastafarian 2. The significance of the Rastafarian symbols. 3. The founder and foundation of the different Rastafarian symbols. The different uses of the Rastafarian symbols. 4. What major impact the symbols have on the Rastafarian followers Summary of Findings According to The New Integrated Approach Religious Education Workbook, Rastafarians has many symbols. The public symbols are the most dominant. These involve hair styling and their use of food. Hair styling Many Rastafarians wear dreadlocks and beard, but not all of them do. To grow dreadlocks, Rastas just wash it and leave it. The locks take time to grow and one cannot just change his or her hairstyle without showing all of his or her hair. Therefore, it is a symbol of commitment. Rastas’ locks are also a semi- permanent symbol that signifies their devotion to Jah. The use of Food Rastafarians do not eat meat, they are strictly vegetations. Their diet has to be natural; therefore no artificial food is used. Only a few dairy products are eaten. Rastas’ diet consists......

Words: 824 - Pages: 4

Premium Essay

Religious Education

...Rastafari. The largest Rasta village was named the Pinnacle community during Howell leadership. However seventy (70) Rasta’s were arrested and so faith was lost in Howell. Because he mostly wears suit and he didn’t have a beard or locks they believed that Howell wasn’t one of them of them and so Leonard Howell went on his own. Bibliography Campbell C, and Miles M (2005) The New Integrated Religious Education Workbook 5 Appendix Name: Roxanne Williams Candidate #: 100070 Examination Body: CSEC Subject: Religious Education School Code: 100070 Year of Examination: 2013 Territory: Jamaica |...

Words: 778 - Pages: 4

Free Essay

Religious Education Sba

... Research Question:to what extent is it true to say that the Castro revolution of the 20th century was responsible for the trade being relinquished between Cuba and the US? Rationale: I choose to do this topic as I am deeply intrigued as to what really were the challenges faced by the United States to relinquish the trade between itself and Cuba during the cuban revolution of the 20th century.I hope that this study will be beneficial to readers who will endevour to do this topic or to those individuals who just want futher readings on what actually led to the relationship between Cuba and the United States being destroyed. Introduction: In July 1953, Castro led about 120 men in an attack on the Moncada army barracks in Santiago de Cuba. The assault failed, Castro was captured and sentenced to 15 years in prison, and many of his men were killed. The U.S.-backed Batista, looking to improve his authoritarian image, subsequently Castro was released in 1955 as part of a general amnesty. Castro ended up in Mexico, where he met fellow revolutionary Ernesto “Che” Guevara and plotted his return. In 1960. Castro nationalized all U.S.-owned businesses, including oil refineries, factories and casinos. This prompted the United States to end diplomatic relations and impose a trade embargo that still stands today.As a country with a new government, Cuba seemed newly established to the world around it. Change was occurring in Cuba, and the U.S. was not hesitant to impose ideas and...

Words: 433 - Pages: 2

Free Essay

Religious Education Sba

... NAME: SANATEA BRYCE AND KHIMARELY WHITE SCHOOL: CAMPERDOWN HIGH SCHOOL TITLE:JUDAISM FESTIVALS SUBJECT: RELIGIOUS EDUCATION TEACHER’S NAME: MRS TREASURE- SMITH ACKNOWLEDGEMENT First of all I would like to thank god my creator who has given me the knowledge to understand this project that My religious education teacher Mrs Treasure smith has given to me, I also thank Aunty Donna for putting a little effort in helping me With this project. Once again a big thank you all……………………………………………………!! INTRODUCTION This project is base on Judaism festivals or festivals in Judaism. it plays a very important role in our life because it helps you to know more about religious education. Many children nowadays take religious education for granted the important of other religions and our religion which is Christianity. Without thinking about how important it would be to know about other religions and ower own religion. Understanding how ower religion and other religions operate, the good ideas that lies behind reading and knowing more about what happening in different part of the world and what type of rules do some Caribbean places followed by like for example India which is where you can go and find Hinduism let their young ones married at an early age but like we Jamaica ower children start that at the latest 18 years of age. This is what religious education set for us to learn. TABLE OF CONTENT ROSH......

Words: 4751 - Pages: 20

Free Essay

Religious Education Sba

...S.B.A on Rastafarian Symbols Name: Miguel McCarty Grade: 11o Subject: Religious Education School: Bridgeport High School Teacher: Mrs H.Wheatle Introduction This S.B.A is about Rastafarian (symbols). I am going to tell you about the Rastafarian symbols and how it affects them during worship and leisure time. Aims To examine three symbols in Rastafari. To discuss the effect the symbols have on Rastas. To examine the origin of Rastafari. Information Collection How information was collected: Greater Portmore branch library Time span: Start: Thursday, May 29, 2013 Finish: Secondary Data Where was information collected? The internet; Books Primary Data Information was collected at: At the Rastafarian village in Montego Bay The Cannabis Plant According to: The marijuana leaf is one of the most popular symbols in the Rastafarian religion. It's presence in the Jamaican culture is thought to have influenced it's inclusion into Rastafari religious practices. Some adherents believe marijuana aids their meditation as well as others aspects of the spirituality. The Colours According to: The colours associated with Rastafarianism are known as "pan-African" colours. There are either three or four colours, depending on the tradition: green, yellow (or gold), red (as in the Ethiopian flag), and sometimes...

Words: 619 - Pages: 3

Premium Essay

How Critical Thinking Can Promote Religious Education at Key Stage 3

...and performances of students in Religious Education. The focus of change is on the utilisation of planning strategies to promote interest in learning and the adaptation of critical thinking tools for the purpose of engaging the students in learning. A critical evaluation of the impact of effective questioning and dialogue forms part of the recommendations made. The new knowledge in this report is grounded in research and validated consequent upon the use of mixed methods approach to research and it is proof of evidence based research. The data for this research has been put together using questionnaires and informal interviews of purposively selected students. Recommendations include the use of conversation, inquiry and debate as tools for critical thinking in lessons. Implementation is expected to take the form of teachers purposely planning questions and classroom talk (dialogue) based on the utilisation of Bloom’s taxonomy of critical thinking skills. Keywords Effective questioning, Critical Thinking, Dialogue, Teaching and Learning, Change Theory, Change Initiative, Research, Implementation INTRODUCTION: PURPOSES, PARAMETERS AND CONTEXT I set out in this research to investigate how critical thinking can be used to improve performance in Religious education. I have been inspired by the awareness created by the Office for standards in Education (OFSTED) on the need to transform the teaching and learning of Religious Education in schools. The OFSTED report......

Words: 12052 - Pages: 49

Premium Essay

Religious Education Sba on Rasta

...Religious Education Sba Acknowledgement I would like to thank the LORD for giving me the will and strength to complete this assignment. Secondly I would like to thank my friends and family for their small input. Thank you all for your participation to the completion and success of this School Based Assessment. Statement of Aims Topic: The Rastafarian main symbols and their importance It is the intention of the researcher to: 1. Find out the origin of Rastafarianism 2. To identify the main symbols of Rastafarians 3. To investigate the importance of the symbols Methodology The information for this research was gathered mainly through the review of literature and from the internet. I started my research on October 20, 2011 and was finished within a two week period. Information was gathered from different sources found on different websites and from literature as seen in the bibliography. Introduction In the following project you will learn of the origin of the Rasta way of life, which arose as a result of a period of severe depression, racism and class discrimination, during the 1930. This was the perfect chance for poor people to embrace their religion, so they did. You will also learn of the different important symbols of the Rasta’s, namely, ganja, the Star of David, the word Jah, the conquering lion and the lamb, dreadlocks and the Rasta flag. These are of grave importance, being a part of their day to day activities and living. In this project......

Words: 333 - Pages: 2

Premium Essay

Exploring the Broken Bay Catholic Diocesan Religious Education Curriculum Document

...Exploring the Broken Bay Catholic Diocesan Religious Education Curriculum Document Student’s Name Institution Exploring the Broken Bay Catholic Diocesan Religious Education Curriculum Document In Catholic schools, religious education is the first area of learning. Religious education enables children and the youth to justify, explain and understand Christian message and teachings as they are taught by the Catholic Church (Carswell, 2001). Religious education is taught to all those who follow and believe in Christ in the world. Through learning, students are taught research, guided on how to study and overall learn how Christians should live (Ryan, 2003). These students also get to know the distinctive vision of the Catholic Church. The Catholic curriculum systematically directs students and enhances them to reflect critically on the meaning of being a Catholic (Carswell, 2001). In Australia, Religious Education Curriculum is imperative, and a must learn program for all years of schooling. This Program, which is denoted as K-12 contains what is to be covered in the Religious curriculum (Ryan, 2003). Time allocations are prescribed to this curriculum about the age of the learners. This program is part of the learning experience and is mandated by Australian Bishops. Its primary objective is to raising religious knowledge and awareness. In Australia, Religious Education is an extremely acclaimed feature of the Australian Catholic schools......

Words: 2261 - Pages: 10

Premium Essay

Religious Education Sba

...patience and motivation. My classmates for their undying competition. My mother, Camille Lewis for allowing me the time to explore and investigate data. And at last but not least my aunt Venessa Ferguson for her insights. Introduction Rastafarianism is an afro-centric religious and social movement based in the Caribbean island of Jamaica. The Rastafarian symbols are important tools to the Rasta’s and their religion. A massive amount of Rasta’s see it as a way of life rather than a religion, they do not like to be referred to as “ism”. As a result of this the researcher did a research in order to find out, the origin of each symbol, to identify the main symbols and how they are used. Statement of aims Topic: The Rastafarian main symbols and their importance It is the intention of the researcher to: 1 .To identify the main symbols of Rastafarians. 2. Find out the origin of each symbol. 3. To investigate how each symbol is used. Information Collection Several means were used to collect data. Data was collected by internet, interview, books and observation. According to slideshare.net, “Rastafarianism is an afro-centric religious and social movement based in the Caribbean island of Jamaica.” Wikipedia went further in saying that “Rastafarianism is an Abrahamic belief which developed in Jamaica in the 1930’s following the coronation of Halie Selassie I as emperor of Ethiopia in 1930. Its adherents worship Haile......

Words: 597 - Pages: 3

Free Essay

Religious Education

...English B Casey Ann Hudson Mrs. Grandson Essay writing (The Lion and the Jewel) In The Lion and Jewel two men go in pursuit of Sidi a) Explain fully why Baroka emerge victory over Lakunle (8m) b) Comment on Soyinka’s use of stage direction or pantomime, discuss the dramatic effects (9m) c) Discuss the similarities between Baroka and Soyinka (8m) In the book of the Lion and Jewel by Soyinka; two men, Baroka and Lakunle go in pursuit of the village beauty Sidi .Soyinka uses stage direction, that is how the characters appear on stage as to how they exit and the pantomime which gives use insight into the past as well as how the chief Baroka emerges victory over the schoolmaster, Lakunle. Throughout the play we see several similarities between the Bale and the author of the book, Soyinka. Lakunle, the schoolmaster is very intrigued with the whole idea of civilization and modernity. He forces his way of civilization on Sidi, the jewel of Ilujinle, the girl he wishes to marry, however Sidi being very sassy and loyal to her culture doesn’t wish to be modern or understanding to anything modern e.g. when Lakunle kisses her she quickly push him away and says she find the thing he does with his mouth disgusting. She often insults and calls him mad; whenever she does this he quickly disrespects her. Example of this is seen in Morning when he refers to her as a Bush girl with a small mind. While Baroka on the other hand, referred to as the cunning fox uses his tricks...

Words: 879 - Pages: 4

Free Essay

Religious Education

...Dreadlocks are an extremely prominent symbol of Rastafari. Dreadlocks are considered the natural state of African hair when it is left to grow as God intended as what Numbers 6:5 states- All the days of his vow of separation, no razor shall touch his head. Until the time is completed for which he separates himself to the Lord, he shall be holy. He shall let the locks of hair of his head grow long. Dreadlocks originated in Africa but goes back to biblical times when it was worn by the Nazarenes. One of the Nazarite vows is “They shall not make baldness upon their head, neither shall they shave off the corner of their beard nor make any cuttings in their flesh” which can be found in the book of Leviticus 21:5. Nowadays dreadlocks is worn by everyone even if they are not a committed Rasta. I recommend that the dreadlocks should not be as sacred and significant since it is now being worn by non-committed Rastafarians. Marijuana or Ganja is very sacred and has a lot of uses in the Rastafari community. It is used for medicinal purposes and is use for smoking as a part of a ritual. Ganja is also considered the “wisdom weed” by Rastafarians, as its use helps one to gain wisdom. Rastafarians believe that the Ganja was found on King Solomon’s grave hence that is why they believe it is a God given herb. Ganja is also seen by Rastafarians as the herb of life mentioned in the Bible. Rastafarians use of ganja is justified by the following Psalms 104:14 that says, “He causeth the grass......

Words: 427 - Pages: 2

Premium Essay

A Discussion on the Issue of Indoctrination as It Relates to the Philosophy of Education in General and Philosophy of Religious Education in Particular

...agree with each other’s ideas. Philosophy of Education then is the way an individual values education, especially formal education. Msango et al in (Tembo 2000: 33) define Philosophy of Education as: A critical and systematic intellectual endeavour to see education as a whole and as an integral part of men’s culture .... any philosophy dealing with or applied to the process of public or private education and used as a basis for the general determination, interpretation and evaluation of educational problems having to do with objectives, practices and outcomes, child and social needs; materials of study and all other aspects of the field. “Philosophy of Religious Education deals with any problems and issues in the Philosophy of Education that affects Religious Education as a curriculum subject” (Simuchimba 2008: 2). This academic paper is going to discuss the issue of indoctrination as it relates to the Philosophy of education in general and philosophy of Religious Education in particular. Education, whether in general or in particular, such as in Religious Education is the imparting of knowledge, attitudes, skills in a learner so that they can live life meaningfully. Usually when we talk of indoctrination, we are referring to religion and some ideologies such as Scientific Socialism, Humanism, Ujamaa, Capitalism and the effect these have on the human psychic. Indeed indoctrination is a major issue in the Philosophy of Education generally because it is associated with......

Words: 1891 - Pages: 8

Premium Essay

Religious

...Elements of Religious Traditions Paper Juanj Wu REL134 June 27, 2011 Michele Brewster Elements of Religious Traditions Paper When I was a little girl, my grandmother used to tell me how she survived from Japanese air raids by praying to the Buddhist mercy Goddess-Guang Yin. Then I went to school, I studied sciences, and was told that no supernatural power such as God or Goddess existed. I believe sciences, but whenever I feel vulnerable, Guang Yin appears in my mind. For years, I have the image of Guang Yin hanging in my car to keep me safe and sound. This is how religions, Christianity, Islam, Buddhism, and many other religions, affect me spiritually and people throughout the world. Religion is defined as a set of beliefs concerning the cause, nature, and purpose of the universe, especially when considered as the creation of a super human agency or agencies, usually involving devotional and ritual observances, and often containing a moral code governing the conduct of human affairs According to Molloy (2010), there are eight elements involved in religions: 1. The belief system or the worldview, which explain the universe and the human beings, 2. Community, the group of people who share the belief system, 3.Central myths, which are the stories that interpret the beliefs. 4. Ritual, the ceremonies express the beliefs. 5. Ethics, rules of human behavior. 6. Characteristic emotional experiences, the emotions related to religion. 7. Material expression, such as......

Words: 843 - Pages: 4